Step |
Hyp |
Ref |
Expression |
1 |
|
frgrregorufrg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrregorufrg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
4 |
1 2 3
|
frgrregorufr |
⊢ ( 𝐺 ∈ FriendGraph → ( ∃ 𝑎 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑎 ) = 𝑘 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0 ) → ( ∃ 𝑎 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑎 ) = 𝑘 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
6 |
|
frgrusgr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
7 |
|
nn0xnn0 |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℕ0* ) |
8 |
1 3
|
usgreqdrusgr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑘 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 ) → 𝐺 RegUSGraph 𝑘 ) |
9 |
8
|
3expia |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑘 ∈ ℕ0* ) → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 → 𝐺 RegUSGraph 𝑘 ) ) |
10 |
6 7 9
|
syl2an |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0 ) → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 → 𝐺 RegUSGraph 𝑘 ) ) |
11 |
10
|
orim1d |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0 ) → ( ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
12 |
5 11
|
syld |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0 ) → ( ∃ 𝑎 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑎 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
13 |
12
|
ralrimiva |
⊢ ( 𝐺 ∈ FriendGraph → ∀ 𝑘 ∈ ℕ0 ( ∃ 𝑎 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑎 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |