Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017) (Revised by AV, 29-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | frgrusgr | ⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
2 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
3 | 1 2 | isfrgr | ⊢ ( 𝐺 ∈ FriendGraph ↔ ( 𝐺 ∈ USGraph ∧ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) |
4 | 3 | simplbi | ⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |