Metamath Proof Explorer


Theorem frgrusgr

Description: A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017) (Revised by AV, 29-Mar-2021)

Ref Expression
Assertion frgrusgr ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )

Proof

Step Hyp Ref Expression
1 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
2 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
3 1 2 isfrgr ( 𝐺 ∈ FriendGraph ↔ ( 𝐺 ∈ USGraph ∧ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) )
4 3 simplbi ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )