Metamath Proof Explorer


Theorem frgrwopreg1

Description: According to statement 5 in Huneke p. 2: "If A ... is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018) (Proof shortened by AV, 4-Feb-2022)

Ref Expression
Hypotheses frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
frgrwopreg.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion frgrwopreg1 ( ( 𝐺 ∈ FriendGraph ∧ ( ♯ ‘ 𝐴 ) = 1 ) → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
4 frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
5 frgrwopreg.e 𝐸 = ( Edg ‘ 𝐺 )
6 1 fvexi 𝑉 ∈ V
7 3 6 rabex2 𝐴 ∈ V
8 hash1snb ( 𝐴 ∈ V → ( ( ♯ ‘ 𝐴 ) = 1 ↔ ∃ 𝑣 𝐴 = { 𝑣 } ) )
9 7 8 ax-mp ( ( ♯ ‘ 𝐴 ) = 1 ↔ ∃ 𝑣 𝐴 = { 𝑣 } )
10 exsnrex ( ∃ 𝑣 𝐴 = { 𝑣 } ↔ ∃ 𝑣𝐴 𝐴 = { 𝑣 } )
11 3 ssrab3 𝐴𝑉
12 ssrexv ( 𝐴𝑉 → ( ∃ 𝑣𝐴 𝐴 = { 𝑣 } → ∃ 𝑣𝑉 𝐴 = { 𝑣 } ) )
13 11 12 ax-mp ( ∃ 𝑣𝐴 𝐴 = { 𝑣 } → ∃ 𝑣𝑉 𝐴 = { 𝑣 } )
14 1 2 3 4 5 frgrwopregasn ( ( 𝐺 ∈ FriendGraph ∧ 𝑣𝑉𝐴 = { 𝑣 } ) → ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 )
15 14 3expia ( ( 𝐺 ∈ FriendGraph ∧ 𝑣𝑉 ) → ( 𝐴 = { 𝑣 } → ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) )
16 15 reximdva ( 𝐺 ∈ FriendGraph → ( ∃ 𝑣𝑉 𝐴 = { 𝑣 } → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) )
17 13 16 syl5com ( ∃ 𝑣𝐴 𝐴 = { 𝑣 } → ( 𝐺 ∈ FriendGraph → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) )
18 10 17 sylbi ( ∃ 𝑣 𝐴 = { 𝑣 } → ( 𝐺 ∈ FriendGraph → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) )
19 18 com12 ( 𝐺 ∈ FriendGraph → ( ∃ 𝑣 𝐴 = { 𝑣 } → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) )
20 9 19 syl5bi ( 𝐺 ∈ FriendGraph → ( ( ♯ ‘ 𝐴 ) = 1 → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) )
21 20 imp ( ( 𝐺 ∈ FriendGraph ∧ ( ♯ ‘ 𝐴 ) = 1 ) → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 )