Step |
Hyp |
Ref |
Expression |
1 |
|
frgrwopreg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrwopreg.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
3 |
|
frgrwopreg.a |
⊢ 𝐴 = { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } |
4 |
|
frgrwopreg.b |
⊢ 𝐵 = ( 𝑉 ∖ 𝐴 ) |
5 |
|
frgrwopreg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
6 |
1 2 3 4
|
frgrwopreglem1 |
⊢ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) |
7 |
6
|
simpri |
⊢ 𝐵 ∈ V |
8 |
|
hash1snb |
⊢ ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 1 ↔ ∃ 𝑣 𝐵 = { 𝑣 } ) ) |
9 |
7 8
|
ax-mp |
⊢ ( ( ♯ ‘ 𝐵 ) = 1 ↔ ∃ 𝑣 𝐵 = { 𝑣 } ) |
10 |
|
exsnrex |
⊢ ( ∃ 𝑣 𝐵 = { 𝑣 } ↔ ∃ 𝑣 ∈ 𝐵 𝐵 = { 𝑣 } ) |
11 |
|
difss |
⊢ ( 𝑉 ∖ 𝐴 ) ⊆ 𝑉 |
12 |
4 11
|
eqsstri |
⊢ 𝐵 ⊆ 𝑉 |
13 |
|
ssrexv |
⊢ ( 𝐵 ⊆ 𝑉 → ( ∃ 𝑣 ∈ 𝐵 𝐵 = { 𝑣 } → ∃ 𝑣 ∈ 𝑉 𝐵 = { 𝑣 } ) ) |
14 |
12 13
|
ax-mp |
⊢ ( ∃ 𝑣 ∈ 𝐵 𝐵 = { 𝑣 } → ∃ 𝑣 ∈ 𝑉 𝐵 = { 𝑣 } ) |
15 |
1 2 3 4 5
|
frgrwopregbsn |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑣 ∈ 𝑉 ∧ 𝐵 = { 𝑣 } ) → ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) |
16 |
15
|
3expia |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑣 ∈ 𝑉 ) → ( 𝐵 = { 𝑣 } → ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) |
17 |
16
|
reximdva |
⊢ ( 𝐺 ∈ FriendGraph → ( ∃ 𝑣 ∈ 𝑉 𝐵 = { 𝑣 } → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) |
18 |
14 17
|
syl5com |
⊢ ( ∃ 𝑣 ∈ 𝐵 𝐵 = { 𝑣 } → ( 𝐺 ∈ FriendGraph → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) |
19 |
10 18
|
sylbi |
⊢ ( ∃ 𝑣 𝐵 = { 𝑣 } → ( 𝐺 ∈ FriendGraph → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) |
20 |
19
|
com12 |
⊢ ( 𝐺 ∈ FriendGraph → ( ∃ 𝑣 𝐵 = { 𝑣 } → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) |
21 |
9 20
|
syl5bi |
⊢ ( 𝐺 ∈ FriendGraph → ( ( ♯ ‘ 𝐵 ) = 1 → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) |
22 |
21
|
imp |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) |