Metamath Proof Explorer


Theorem frgrwopreg2

Description: According to statement 5 in Huneke p. 2: "If ... B is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018) (Proof shortened by AV, 4-Feb-2022)

Ref Expression
Hypotheses frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
frgrwopreg.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion frgrwopreg2 ( ( 𝐺 ∈ FriendGraph ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
4 frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
5 frgrwopreg.e 𝐸 = ( Edg ‘ 𝐺 )
6 1 2 3 4 frgrwopreglem1 ( 𝐴 ∈ V ∧ 𝐵 ∈ V )
7 6 simpri 𝐵 ∈ V
8 hash1snb ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 1 ↔ ∃ 𝑣 𝐵 = { 𝑣 } ) )
9 7 8 ax-mp ( ( ♯ ‘ 𝐵 ) = 1 ↔ ∃ 𝑣 𝐵 = { 𝑣 } )
10 exsnrex ( ∃ 𝑣 𝐵 = { 𝑣 } ↔ ∃ 𝑣𝐵 𝐵 = { 𝑣 } )
11 difss ( 𝑉𝐴 ) ⊆ 𝑉
12 4 11 eqsstri 𝐵𝑉
13 ssrexv ( 𝐵𝑉 → ( ∃ 𝑣𝐵 𝐵 = { 𝑣 } → ∃ 𝑣𝑉 𝐵 = { 𝑣 } ) )
14 12 13 ax-mp ( ∃ 𝑣𝐵 𝐵 = { 𝑣 } → ∃ 𝑣𝑉 𝐵 = { 𝑣 } )
15 1 2 3 4 5 frgrwopregbsn ( ( 𝐺 ∈ FriendGraph ∧ 𝑣𝑉𝐵 = { 𝑣 } ) → ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 )
16 15 3expia ( ( 𝐺 ∈ FriendGraph ∧ 𝑣𝑉 ) → ( 𝐵 = { 𝑣 } → ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) )
17 16 reximdva ( 𝐺 ∈ FriendGraph → ( ∃ 𝑣𝑉 𝐵 = { 𝑣 } → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) )
18 14 17 syl5com ( ∃ 𝑣𝐵 𝐵 = { 𝑣 } → ( 𝐺 ∈ FriendGraph → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) )
19 10 18 sylbi ( ∃ 𝑣 𝐵 = { 𝑣 } → ( 𝐺 ∈ FriendGraph → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) )
20 19 com12 ( 𝐺 ∈ FriendGraph → ( ∃ 𝑣 𝐵 = { 𝑣 } → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) )
21 9 20 syl5bi ( 𝐺 ∈ FriendGraph → ( ( ♯ ‘ 𝐵 ) = 1 → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) )
22 21 imp ( ( 𝐺 ∈ FriendGraph ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 )