Metamath Proof Explorer


Theorem frgrwopreglem1

Description: Lemma 1 for frgrwopreg : the classes A and B are sets. The definition of A and B corresponds to definition 3 in Huneke p. 2: "Let A be the set of all vertices of degree k, let B be the set of all vertices of degree different from k, ..." (Contributed by Alexander van der Vekens, 31-Dec-2017) (Revised by AV, 10-May-2021)

Ref Expression
Hypotheses frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
Assertion frgrwopreglem1 ( 𝐴 ∈ V ∧ 𝐵 ∈ V )

Proof

Step Hyp Ref Expression
1 frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
4 frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
5 1 fvexi 𝑉 ∈ V
6 rabexg ( 𝑉 ∈ V → { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 } ∈ V )
7 3 6 eqeltrid ( 𝑉 ∈ V → 𝐴 ∈ V )
8 difexg ( 𝑉 ∈ V → ( 𝑉𝐴 ) ∈ V )
9 4 8 eqeltrid ( 𝑉 ∈ V → 𝐵 ∈ V )
10 7 9 jca ( 𝑉 ∈ V → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
11 5 10 ax-mp ( 𝐴 ∈ V ∧ 𝐵 ∈ V )