| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrwopreg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
frgrwopreg.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
| 3 |
|
frgrwopreg.a |
⊢ 𝐴 = { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } |
| 4 |
|
frgrwopreg.b |
⊢ 𝐵 = ( 𝑉 ∖ 𝐴 ) |
| 5 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑌 → ( ( 𝐷 ‘ 𝑥 ) = 𝐾 ↔ ( 𝐷 ‘ 𝑌 ) = 𝐾 ) ) |
| 6 |
5
|
notbid |
⊢ ( 𝑥 = 𝑌 → ( ¬ ( 𝐷 ‘ 𝑥 ) = 𝐾 ↔ ¬ ( 𝐷 ‘ 𝑌 ) = 𝐾 ) ) |
| 7 |
3
|
difeq2i |
⊢ ( 𝑉 ∖ 𝐴 ) = ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) |
| 8 |
|
notrab |
⊢ ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) = { 𝑥 ∈ 𝑉 ∣ ¬ ( 𝐷 ‘ 𝑥 ) = 𝐾 } |
| 9 |
4 7 8
|
3eqtri |
⊢ 𝐵 = { 𝑥 ∈ 𝑉 ∣ ¬ ( 𝐷 ‘ 𝑥 ) = 𝐾 } |
| 10 |
6 9
|
elrab2 |
⊢ ( 𝑌 ∈ 𝐵 ↔ ( 𝑌 ∈ 𝑉 ∧ ¬ ( 𝐷 ‘ 𝑌 ) = 𝐾 ) ) |
| 11 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐷 ‘ 𝑥 ) = 𝐾 ↔ ( 𝐷 ‘ 𝑋 ) = 𝐾 ) ) |
| 12 |
11 3
|
elrab2 |
⊢ ( 𝑋 ∈ 𝐴 ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝐷 ‘ 𝑋 ) = 𝐾 ) ) |
| 13 |
|
eqeq2 |
⊢ ( ( 𝐷 ‘ 𝑋 ) = 𝐾 → ( ( 𝐷 ‘ 𝑌 ) = ( 𝐷 ‘ 𝑋 ) ↔ ( 𝐷 ‘ 𝑌 ) = 𝐾 ) ) |
| 14 |
13
|
notbid |
⊢ ( ( 𝐷 ‘ 𝑋 ) = 𝐾 → ( ¬ ( 𝐷 ‘ 𝑌 ) = ( 𝐷 ‘ 𝑋 ) ↔ ¬ ( 𝐷 ‘ 𝑌 ) = 𝐾 ) ) |
| 15 |
|
neqne |
⊢ ( ¬ ( 𝐷 ‘ 𝑌 ) = ( 𝐷 ‘ 𝑋 ) → ( 𝐷 ‘ 𝑌 ) ≠ ( 𝐷 ‘ 𝑋 ) ) |
| 16 |
15
|
necomd |
⊢ ( ¬ ( 𝐷 ‘ 𝑌 ) = ( 𝐷 ‘ 𝑋 ) → ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) |
| 17 |
14 16
|
biimtrrdi |
⊢ ( ( 𝐷 ‘ 𝑋 ) = 𝐾 → ( ¬ ( 𝐷 ‘ 𝑌 ) = 𝐾 → ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) ) |
| 18 |
12 17
|
simplbiim |
⊢ ( 𝑋 ∈ 𝐴 → ( ¬ ( 𝐷 ‘ 𝑌 ) = 𝐾 → ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) ) |
| 19 |
18
|
com12 |
⊢ ( ¬ ( 𝐷 ‘ 𝑌 ) = 𝐾 → ( 𝑋 ∈ 𝐴 → ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) ) |
| 20 |
10 19
|
simplbiim |
⊢ ( 𝑌 ∈ 𝐵 → ( 𝑋 ∈ 𝐴 → ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) ) |
| 21 |
20
|
impcom |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) |