Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrncvvdeq.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
3 |
|
frgrwopreglem4a.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
4 |
|
fveq2 |
⊢ ( 𝑋 = 𝑌 → ( 𝐷 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑌 ) ) |
5 |
4
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 = 𝑌 → ( 𝐷 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑌 ) ) ) |
6 |
5
|
necon3d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) → 𝑋 ≠ 𝑌 ) ) |
7 |
6
|
imp |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) → 𝑋 ≠ 𝑌 ) |
8 |
7
|
3adant1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) → 𝑋 ≠ 𝑌 ) |
9 |
1 2
|
frgrncvvdeq |
⊢ ( 𝐺 ∈ FriendGraph → ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑥 ) → ( 𝐷 ‘ 𝑥 ) = ( 𝐷 ‘ 𝑦 ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐺 NeighbVtx 𝑥 ) = ( 𝐺 NeighbVtx 𝑋 ) ) |
11 |
|
neleq2 |
⊢ ( ( 𝐺 NeighbVtx 𝑥 ) = ( 𝐺 NeighbVtx 𝑋 ) → ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑥 ) ↔ 𝑦 ∉ ( 𝐺 NeighbVtx 𝑋 ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑥 ) ↔ 𝑦 ∉ ( 𝐺 NeighbVtx 𝑋 ) ) ) |
13 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐷 ‘ 𝑥 ) = ( 𝐷 ‘ 𝑦 ) ↔ ( 𝐷 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑦 ) ) ) |
14 |
12 13
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑥 ) → ( 𝐷 ‘ 𝑥 ) = ( 𝐷 ‘ 𝑦 ) ) ↔ ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐷 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑦 ) ) ) ) |
15 |
|
neleq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑋 ) ↔ 𝑌 ∉ ( 𝐺 NeighbVtx 𝑋 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝐷 ‘ 𝑦 ) = ( 𝐷 ‘ 𝑌 ) ) |
17 |
16
|
eqeq2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝐷 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑦 ) ↔ ( 𝐷 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑌 ) ) ) |
18 |
15 17
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐷 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑦 ) ) ↔ ( 𝑌 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐷 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑌 ) ) ) ) |
19 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ∈ 𝑉 ) |
20 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
21 |
20
|
difeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑉 ∖ { 𝑥 } ) = ( 𝑉 ∖ { 𝑋 } ) ) |
22 |
21
|
adantl |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) ∧ 𝑥 = 𝑋 ) → ( 𝑉 ∖ { 𝑥 } ) = ( 𝑉 ∖ { 𝑋 } ) ) |
23 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ 𝑉 ) |
24 |
|
necom |
⊢ ( 𝑋 ≠ 𝑌 ↔ 𝑌 ≠ 𝑋 ) |
25 |
24
|
biimpi |
⊢ ( 𝑋 ≠ 𝑌 → 𝑌 ≠ 𝑋 ) |
26 |
23 25
|
anim12i |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 𝑋 ) ) |
27 |
|
eldifsn |
⊢ ( 𝑌 ∈ ( 𝑉 ∖ { 𝑋 } ) ↔ ( 𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 𝑋 ) ) |
28 |
26 27
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → 𝑌 ∈ ( 𝑉 ∖ { 𝑋 } ) ) |
29 |
14 18 19 22 28
|
rspc2vd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑥 ) → ( 𝐷 ‘ 𝑥 ) = ( 𝐷 ‘ 𝑦 ) ) → ( 𝑌 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐷 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑌 ) ) ) ) |
30 |
|
nnel |
⊢ ( ¬ 𝑌 ∉ ( 𝐺 NeighbVtx 𝑋 ) ↔ 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) |
31 |
|
nbgrsym |
⊢ ( 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) ↔ 𝑋 ∈ ( 𝐺 NeighbVtx 𝑌 ) ) |
32 |
|
frgrusgr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
33 |
3
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑋 ∈ ( 𝐺 NeighbVtx 𝑌 ) ↔ { 𝑋 , 𝑌 } ∈ 𝐸 ) ) |
34 |
32 33
|
syl |
⊢ ( 𝐺 ∈ FriendGraph → ( 𝑋 ∈ ( 𝐺 NeighbVtx 𝑌 ) ↔ { 𝑋 , 𝑌 } ∈ 𝐸 ) ) |
35 |
34
|
biimpd |
⊢ ( 𝐺 ∈ FriendGraph → ( 𝑋 ∈ ( 𝐺 NeighbVtx 𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) |
36 |
31 35
|
syl5bi |
⊢ ( 𝐺 ∈ FriendGraph → ( 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) |
37 |
36
|
imp |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) |
38 |
37
|
a1d |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) → ( ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) |
39 |
38
|
expcom |
⊢ ( 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐺 ∈ FriendGraph → ( ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) |
40 |
39
|
a1d |
⊢ ( 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) → ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐺 ∈ FriendGraph → ( ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) ) |
41 |
30 40
|
sylbi |
⊢ ( ¬ 𝑌 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐺 ∈ FriendGraph → ( ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) ) |
42 |
|
eqneqall |
⊢ ( ( 𝐷 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑌 ) → ( ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) |
43 |
42
|
2a1d |
⊢ ( ( 𝐷 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑌 ) → ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐺 ∈ FriendGraph → ( ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) ) |
44 |
41 43
|
ja |
⊢ ( ( 𝑌 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐷 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑌 ) ) → ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐺 ∈ FriendGraph → ( ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) ) |
45 |
44
|
com12 |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑌 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐷 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑌 ) ) → ( 𝐺 ∈ FriendGraph → ( ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) ) |
46 |
29 45
|
syld |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑥 ) → ( 𝐷 ‘ 𝑥 ) = ( 𝐷 ‘ 𝑦 ) ) → ( 𝐺 ∈ FriendGraph → ( ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) ) |
47 |
46
|
com3l |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑥 ) → ( 𝐷 ‘ 𝑥 ) = ( 𝐷 ‘ 𝑦 ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) ) |
48 |
9 47
|
mpcom |
⊢ ( 𝐺 ∈ FriendGraph → ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) |
49 |
48
|
expd |
⊢ ( 𝐺 ∈ FriendGraph → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ≠ 𝑌 → ( ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) ) |
50 |
49
|
com34 |
⊢ ( 𝐺 ∈ FriendGraph → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) → ( 𝑋 ≠ 𝑌 → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) ) |
51 |
50
|
3imp |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) → ( 𝑋 ≠ 𝑌 → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) |
52 |
8 51
|
mpd |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) |