Metamath Proof Explorer


Theorem frgrwopreglem4a

Description: In a friendship graph any two vertices with different degrees are connected. Alternate version of frgrwopreglem4 without a fixed degree and without using the sets A and B . (Contributed by Alexander van der Vekens, 30-Dec-2017) (Revised by AV, 4-Feb-2022)

Ref Expression
Hypotheses frgrncvvdeq.v 𝑉 = ( Vtx ‘ 𝐺 )
frgrncvvdeq.d 𝐷 = ( VtxDeg ‘ 𝐺 )
frgrwopreglem4a.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion frgrwopreglem4a ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑋𝑉𝑌𝑉 ) ∧ ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) ) → { 𝑋 , 𝑌 } ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrncvvdeq.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 frgrwopreglem4a.e 𝐸 = ( Edg ‘ 𝐺 )
4 fveq2 ( 𝑋 = 𝑌 → ( 𝐷𝑋 ) = ( 𝐷𝑌 ) )
5 4 a1i ( ( 𝑋𝑉𝑌𝑉 ) → ( 𝑋 = 𝑌 → ( 𝐷𝑋 ) = ( 𝐷𝑌 ) ) )
6 5 necon3d ( ( 𝑋𝑉𝑌𝑉 ) → ( ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) → 𝑋𝑌 ) )
7 6 imp ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) ) → 𝑋𝑌 )
8 7 3adant1 ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑋𝑉𝑌𝑉 ) ∧ ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) ) → 𝑋𝑌 )
9 1 2 frgrncvvdeq ( 𝐺 ∈ FriendGraph → ∀ 𝑥𝑉𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑥 ) → ( 𝐷𝑥 ) = ( 𝐷𝑦 ) ) )
10 oveq2 ( 𝑥 = 𝑋 → ( 𝐺 NeighbVtx 𝑥 ) = ( 𝐺 NeighbVtx 𝑋 ) )
11 neleq2 ( ( 𝐺 NeighbVtx 𝑥 ) = ( 𝐺 NeighbVtx 𝑋 ) → ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑥 ) ↔ 𝑦 ∉ ( 𝐺 NeighbVtx 𝑋 ) ) )
12 10 11 syl ( 𝑥 = 𝑋 → ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑥 ) ↔ 𝑦 ∉ ( 𝐺 NeighbVtx 𝑋 ) ) )
13 fveqeq2 ( 𝑥 = 𝑋 → ( ( 𝐷𝑥 ) = ( 𝐷𝑦 ) ↔ ( 𝐷𝑋 ) = ( 𝐷𝑦 ) ) )
14 12 13 imbi12d ( 𝑥 = 𝑋 → ( ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑥 ) → ( 𝐷𝑥 ) = ( 𝐷𝑦 ) ) ↔ ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐷𝑋 ) = ( 𝐷𝑦 ) ) ) )
15 neleq1 ( 𝑦 = 𝑌 → ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑋 ) ↔ 𝑌 ∉ ( 𝐺 NeighbVtx 𝑋 ) ) )
16 fveq2 ( 𝑦 = 𝑌 → ( 𝐷𝑦 ) = ( 𝐷𝑌 ) )
17 16 eqeq2d ( 𝑦 = 𝑌 → ( ( 𝐷𝑋 ) = ( 𝐷𝑦 ) ↔ ( 𝐷𝑋 ) = ( 𝐷𝑌 ) ) )
18 15 17 imbi12d ( 𝑦 = 𝑌 → ( ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐷𝑋 ) = ( 𝐷𝑦 ) ) ↔ ( 𝑌 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐷𝑋 ) = ( 𝐷𝑌 ) ) ) )
19 simpll ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ 𝑋𝑌 ) → 𝑋𝑉 )
20 sneq ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } )
21 20 difeq2d ( 𝑥 = 𝑋 → ( 𝑉 ∖ { 𝑥 } ) = ( 𝑉 ∖ { 𝑋 } ) )
22 21 adantl ( ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ 𝑋𝑌 ) ∧ 𝑥 = 𝑋 ) → ( 𝑉 ∖ { 𝑥 } ) = ( 𝑉 ∖ { 𝑋 } ) )
23 simpr ( ( 𝑋𝑉𝑌𝑉 ) → 𝑌𝑉 )
24 necom ( 𝑋𝑌𝑌𝑋 )
25 24 biimpi ( 𝑋𝑌𝑌𝑋 )
26 23 25 anim12i ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ 𝑋𝑌 ) → ( 𝑌𝑉𝑌𝑋 ) )
27 eldifsn ( 𝑌 ∈ ( 𝑉 ∖ { 𝑋 } ) ↔ ( 𝑌𝑉𝑌𝑋 ) )
28 26 27 sylibr ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ 𝑋𝑌 ) → 𝑌 ∈ ( 𝑉 ∖ { 𝑋 } ) )
29 14 18 19 22 28 rspc2vd ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ 𝑋𝑌 ) → ( ∀ 𝑥𝑉𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑥 ) → ( 𝐷𝑥 ) = ( 𝐷𝑦 ) ) → ( 𝑌 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐷𝑋 ) = ( 𝐷𝑌 ) ) ) )
30 nnel ( ¬ 𝑌 ∉ ( 𝐺 NeighbVtx 𝑋 ) ↔ 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) )
31 nbgrsym ( 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) ↔ 𝑋 ∈ ( 𝐺 NeighbVtx 𝑌 ) )
32 frgrusgr ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
33 3 nbusgreledg ( 𝐺 ∈ USGraph → ( 𝑋 ∈ ( 𝐺 NeighbVtx 𝑌 ) ↔ { 𝑋 , 𝑌 } ∈ 𝐸 ) )
34 32 33 syl ( 𝐺 ∈ FriendGraph → ( 𝑋 ∈ ( 𝐺 NeighbVtx 𝑌 ) ↔ { 𝑋 , 𝑌 } ∈ 𝐸 ) )
35 34 biimpd ( 𝐺 ∈ FriendGraph → ( 𝑋 ∈ ( 𝐺 NeighbVtx 𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) )
36 31 35 syl5bi ( 𝐺 ∈ FriendGraph → ( 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) )
37 36 imp ( ( 𝐺 ∈ FriendGraph ∧ 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) → { 𝑋 , 𝑌 } ∈ 𝐸 )
38 37 a1d ( ( 𝐺 ∈ FriendGraph ∧ 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) → ( ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) )
39 38 expcom ( 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐺 ∈ FriendGraph → ( ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) )
40 39 a1d ( 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) → ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ 𝑋𝑌 ) → ( 𝐺 ∈ FriendGraph → ( ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) )
41 30 40 sylbi ( ¬ 𝑌 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ 𝑋𝑌 ) → ( 𝐺 ∈ FriendGraph → ( ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) )
42 eqneqall ( ( 𝐷𝑋 ) = ( 𝐷𝑌 ) → ( ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) )
43 42 2a1d ( ( 𝐷𝑋 ) = ( 𝐷𝑌 ) → ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ 𝑋𝑌 ) → ( 𝐺 ∈ FriendGraph → ( ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) )
44 41 43 ja ( ( 𝑌 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐷𝑋 ) = ( 𝐷𝑌 ) ) → ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ 𝑋𝑌 ) → ( 𝐺 ∈ FriendGraph → ( ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) )
45 44 com12 ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ 𝑋𝑌 ) → ( ( 𝑌 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐷𝑋 ) = ( 𝐷𝑌 ) ) → ( 𝐺 ∈ FriendGraph → ( ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) )
46 29 45 syld ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ 𝑋𝑌 ) → ( ∀ 𝑥𝑉𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑥 ) → ( 𝐷𝑥 ) = ( 𝐷𝑦 ) ) → ( 𝐺 ∈ FriendGraph → ( ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) )
47 46 com3l ( ∀ 𝑥𝑉𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ( 𝑦 ∉ ( 𝐺 NeighbVtx 𝑥 ) → ( 𝐷𝑥 ) = ( 𝐷𝑦 ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ 𝑋𝑌 ) → ( ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) )
48 9 47 mpcom ( 𝐺 ∈ FriendGraph → ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ 𝑋𝑌 ) → ( ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) )
49 48 expd ( 𝐺 ∈ FriendGraph → ( ( 𝑋𝑉𝑌𝑉 ) → ( 𝑋𝑌 → ( ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) )
50 49 com34 ( 𝐺 ∈ FriendGraph → ( ( 𝑋𝑉𝑌𝑉 ) → ( ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) → ( 𝑋𝑌 → { 𝑋 , 𝑌 } ∈ 𝐸 ) ) ) )
51 50 3imp ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑋𝑉𝑌𝑉 ) ∧ ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) ) → ( 𝑋𝑌 → { 𝑋 , 𝑌 } ∈ 𝐸 ) )
52 8 51 mpd ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑋𝑉𝑌𝑉 ) ∧ ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) ) → { 𝑋 , 𝑌 } ∈ 𝐸 )