Metamath Proof Explorer


Theorem frgrwopreglem5ALT

Description: Alternate direct proof of frgrwopreglem5 , not using frgrwopreglem5a . This proof would be even a little bit shorter than the proof of frgrwopreglem5 without using frgrwopreglem5lem . (Contributed by Alexander van der Vekens, 31-Dec-2017) (Revised by AV, 3-Jan-2022) (Proof shortened by AV, 5-Feb-2022) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
frgrwopreg.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion frgrwopreglem5ALT ( ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) )

Proof

Step Hyp Ref Expression
1 frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
4 frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
5 frgrwopreg.e 𝐸 = ( Edg ‘ 𝐺 )
6 simpllr ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎𝑥 ) ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → 𝑎𝑥 )
7 6 anim1i ( ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎𝑥 ) ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ 𝑏𝑦 ) → ( 𝑎𝑥𝑏𝑦 ) )
8 1 2 3 4 5 frgrwopreglem4 ( 𝐺 ∈ FriendGraph → ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 )
9 preq1 ( 𝑧 = 𝑎 → { 𝑧 , 𝑏 } = { 𝑎 , 𝑏 } )
10 9 eleq1d ( 𝑧 = 𝑎 → ( { 𝑧 , 𝑏 } ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) )
11 10 ralbidv ( 𝑧 = 𝑎 → ( ∀ 𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ↔ ∀ 𝑏𝐵 { 𝑎 , 𝑏 } ∈ 𝐸 ) )
12 11 cbvralvw ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ↔ ∀ 𝑎𝐴𝑏𝐵 { 𝑎 , 𝑏 } ∈ 𝐸 )
13 rsp2 ( ∀ 𝑎𝐴𝑏𝐵 { 𝑎 , 𝑏 } ∈ 𝐸 → ( ( 𝑎𝐴𝑏𝐵 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) )
14 13 com12 ( ( 𝑎𝐴𝑏𝐵 ) → ( ∀ 𝑎𝐴𝑏𝐵 { 𝑎 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 ) )
15 14 ad2ant2r ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( ∀ 𝑎𝐴𝑏𝐵 { 𝑎 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 ) )
16 12 15 syl5bi ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 ) )
17 16 imp ( ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ) → { 𝑎 , 𝑏 } ∈ 𝐸 )
18 prcom { 𝑏 , 𝑥 } = { 𝑥 , 𝑏 }
19 preq1 ( 𝑧 = 𝑥 → { 𝑧 , 𝑏 } = { 𝑥 , 𝑏 } )
20 19 eleq1d ( 𝑧 = 𝑥 → ( { 𝑧 , 𝑏 } ∈ 𝐸 ↔ { 𝑥 , 𝑏 } ∈ 𝐸 ) )
21 20 ralbidv ( 𝑧 = 𝑥 → ( ∀ 𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ↔ ∀ 𝑏𝐵 { 𝑥 , 𝑏 } ∈ 𝐸 ) )
22 21 cbvralvw ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ↔ ∀ 𝑥𝐴𝑏𝐵 { 𝑥 , 𝑏 } ∈ 𝐸 )
23 rsp2 ( ∀ 𝑥𝐴𝑏𝐵 { 𝑥 , 𝑏 } ∈ 𝐸 → ( ( 𝑥𝐴𝑏𝐵 ) → { 𝑥 , 𝑏 } ∈ 𝐸 ) )
24 22 23 sylbi ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → ( ( 𝑥𝐴𝑏𝐵 ) → { 𝑥 , 𝑏 } ∈ 𝐸 ) )
25 24 com12 ( ( 𝑥𝐴𝑏𝐵 ) → ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → { 𝑥 , 𝑏 } ∈ 𝐸 ) )
26 25 ad2ant2lr ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → { 𝑥 , 𝑏 } ∈ 𝐸 ) )
27 26 imp ( ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ) → { 𝑥 , 𝑏 } ∈ 𝐸 )
28 18 27 eqeltrid ( ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ) → { 𝑏 , 𝑥 } ∈ 𝐸 )
29 17 28 jca ( ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) )
30 29 expcom ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ) )
31 8 30 syl ( 𝐺 ∈ FriendGraph → ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ) )
32 31 adantr ( ( 𝐺 ∈ FriendGraph ∧ 𝑎𝑥 ) → ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ) )
33 32 impl ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎𝑥 ) ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) )
34 33 adantr ( ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎𝑥 ) ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ 𝑏𝑦 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) )
35 preq2 ( 𝑏 = 𝑦 → { 𝑥 , 𝑏 } = { 𝑥 , 𝑦 } )
36 35 eleq1d ( 𝑏 = 𝑦 → ( { 𝑥 , 𝑏 } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) )
37 20 36 rspc2v ( ( 𝑥𝐴𝑦𝐵 ) → ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → { 𝑥 , 𝑦 } ∈ 𝐸 ) )
38 37 ad2ant2l ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → { 𝑥 , 𝑦 } ∈ 𝐸 ) )
39 38 impcom ( ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ∧ ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ) → { 𝑥 , 𝑦 } ∈ 𝐸 )
40 prcom { 𝑦 , 𝑎 } = { 𝑎 , 𝑦 }
41 preq2 ( 𝑏 = 𝑦 → { 𝑎 , 𝑏 } = { 𝑎 , 𝑦 } )
42 41 eleq1d ( 𝑏 = 𝑦 → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { 𝑎 , 𝑦 } ∈ 𝐸 ) )
43 10 42 rspc2v ( ( 𝑎𝐴𝑦𝐵 ) → ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑦 } ∈ 𝐸 ) )
44 43 ad2ant2rl ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑦 } ∈ 𝐸 ) )
45 44 impcom ( ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ∧ ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ) → { 𝑎 , 𝑦 } ∈ 𝐸 )
46 40 45 eqeltrid ( ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ∧ ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ) → { 𝑦 , 𝑎 } ∈ 𝐸 )
47 39 46 jca ( ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ∧ ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) )
48 47 ex ( ∀ 𝑧𝐴𝑏𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) )
49 8 48 syl ( 𝐺 ∈ FriendGraph → ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) )
50 49 adantr ( ( 𝐺 ∈ FriendGraph ∧ 𝑎𝑥 ) → ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) )
51 50 impl ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎𝑥 ) ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) )
52 51 adantr ( ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎𝑥 ) ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ 𝑏𝑦 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) )
53 7 34 52 3jca ( ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎𝑥 ) ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ 𝑏𝑦 ) → ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) )
54 53 ex ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎𝑥 ) ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( 𝑏𝑦 → ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) )
55 54 reximdvva ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎𝑥 ) ∧ ( 𝑎𝐴𝑥𝐴 ) ) → ( ∃ 𝑏𝐵𝑦𝐵 𝑏𝑦 → ∃ 𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) )
56 55 exp31 ( 𝐺 ∈ FriendGraph → ( 𝑎𝑥 → ( ( 𝑎𝐴𝑥𝐴 ) → ( ∃ 𝑏𝐵𝑦𝐵 𝑏𝑦 → ∃ 𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) ) ) )
57 56 com24 ( 𝐺 ∈ FriendGraph → ( ∃ 𝑏𝐵𝑦𝐵 𝑏𝑦 → ( ( 𝑎𝐴𝑥𝐴 ) → ( 𝑎𝑥 → ∃ 𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) ) ) )
58 57 imp31 ( ( ( 𝐺 ∈ FriendGraph ∧ ∃ 𝑏𝐵𝑦𝐵 𝑏𝑦 ) ∧ ( 𝑎𝐴𝑥𝐴 ) ) → ( 𝑎𝑥 → ∃ 𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) )
59 58 reximdvva ( ( 𝐺 ∈ FriendGraph ∧ ∃ 𝑏𝐵𝑦𝐵 𝑏𝑦 ) → ( ∃ 𝑎𝐴𝑥𝐴 𝑎𝑥 → ∃ 𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) )
60 59 ex ( 𝐺 ∈ FriendGraph → ( ∃ 𝑏𝐵𝑦𝐵 𝑏𝑦 → ( ∃ 𝑎𝐴𝑥𝐴 𝑎𝑥 → ∃ 𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) ) )
61 60 com13 ( ∃ 𝑎𝐴𝑥𝐴 𝑎𝑥 → ( ∃ 𝑏𝐵𝑦𝐵 𝑏𝑦 → ( 𝐺 ∈ FriendGraph → ∃ 𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) ) )
62 61 imp ( ( ∃ 𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃ 𝑏𝐵𝑦𝐵 𝑏𝑦 ) → ( 𝐺 ∈ FriendGraph → ∃ 𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) )
63 1 2 3 4 frgrwopreglem1 ( 𝐴 ∈ V ∧ 𝐵 ∈ V )
64 hashgt12el ( ( 𝐴 ∈ V ∧ 1 < ( ♯ ‘ 𝐴 ) ) → ∃ 𝑎𝐴𝑥𝐴 𝑎𝑥 )
65 64 ex ( 𝐴 ∈ V → ( 1 < ( ♯ ‘ 𝐴 ) → ∃ 𝑎𝐴𝑥𝐴 𝑎𝑥 ) )
66 hashgt12el ( ( 𝐵 ∈ V ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑏𝐵𝑦𝐵 𝑏𝑦 )
67 66 ex ( 𝐵 ∈ V → ( 1 < ( ♯ ‘ 𝐵 ) → ∃ 𝑏𝐵𝑦𝐵 𝑏𝑦 ) )
68 65 67 im2anan9 ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ( ∃ 𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃ 𝑏𝐵𝑦𝐵 𝑏𝑦 ) ) )
69 63 68 ax-mp ( ( 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ( ∃ 𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃ 𝑏𝐵𝑦𝐵 𝑏𝑦 ) )
70 62 69 syl11 ( 𝐺 ∈ FriendGraph → ( ( 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) )
71 70 3impib ( ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) )