Step |
Hyp |
Ref |
Expression |
1 |
|
frgrwopreg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrwopreg.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
3 |
|
frgrwopreg.a |
⊢ 𝐴 = { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } |
4 |
|
frgrwopreg.b |
⊢ 𝐵 = ( 𝑉 ∖ 𝐴 ) |
5 |
|
frgrwopreg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
6 |
|
simpllr |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎 ≠ 𝑥 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑎 ≠ 𝑥 ) |
7 |
6
|
anim1i |
⊢ ( ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎 ≠ 𝑥 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ≠ 𝑦 ) → ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ) |
8 |
1 2 3 4 5
|
frgrwopreglem4 |
⊢ ( 𝐺 ∈ FriendGraph → ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ) |
9 |
|
preq1 |
⊢ ( 𝑧 = 𝑎 → { 𝑧 , 𝑏 } = { 𝑎 , 𝑏 } ) |
10 |
9
|
eleq1d |
⊢ ( 𝑧 = 𝑎 → ( { 𝑧 , 𝑏 } ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑧 = 𝑎 → ( ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ↔ ∀ 𝑏 ∈ 𝐵 { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
12 |
11
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑎 , 𝑏 } ∈ 𝐸 ) |
13 |
|
rsp2 |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑎 , 𝑏 } ∈ 𝐸 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
14 |
13
|
com12 |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑎 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
15 |
14
|
ad2ant2r |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑎 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
16 |
12 15
|
syl5bi |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
17 |
16
|
imp |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
18 |
|
prcom |
⊢ { 𝑏 , 𝑥 } = { 𝑥 , 𝑏 } |
19 |
|
preq1 |
⊢ ( 𝑧 = 𝑥 → { 𝑧 , 𝑏 } = { 𝑥 , 𝑏 } ) |
20 |
19
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( { 𝑧 , 𝑏 } ∈ 𝐸 ↔ { 𝑥 , 𝑏 } ∈ 𝐸 ) ) |
21 |
20
|
ralbidv |
⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ↔ ∀ 𝑏 ∈ 𝐵 { 𝑥 , 𝑏 } ∈ 𝐸 ) ) |
22 |
21
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑥 , 𝑏 } ∈ 𝐸 ) |
23 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑥 , 𝑏 } ∈ 𝐸 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → { 𝑥 , 𝑏 } ∈ 𝐸 ) ) |
24 |
22 23
|
sylbi |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → { 𝑥 , 𝑏 } ∈ 𝐸 ) ) |
25 |
24
|
com12 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → { 𝑥 , 𝑏 } ∈ 𝐸 ) ) |
26 |
25
|
ad2ant2lr |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → { 𝑥 , 𝑏 } ∈ 𝐸 ) ) |
27 |
26
|
imp |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ) → { 𝑥 , 𝑏 } ∈ 𝐸 ) |
28 |
18 27
|
eqeltrid |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ) → { 𝑏 , 𝑥 } ∈ 𝐸 ) |
29 |
17 28
|
jca |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ) |
30 |
29
|
expcom |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ) ) |
31 |
8 30
|
syl |
⊢ ( 𝐺 ∈ FriendGraph → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑎 ≠ 𝑥 ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ) ) |
33 |
32
|
impl |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎 ≠ 𝑥 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ) |
34 |
33
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎 ≠ 𝑥 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ≠ 𝑦 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ) |
35 |
|
preq2 |
⊢ ( 𝑏 = 𝑦 → { 𝑥 , 𝑏 } = { 𝑥 , 𝑦 } ) |
36 |
35
|
eleq1d |
⊢ ( 𝑏 = 𝑦 → ( { 𝑥 , 𝑏 } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
37 |
20 36
|
rspc2v |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
38 |
37
|
ad2ant2l |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
39 |
38
|
impcom |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) → { 𝑥 , 𝑦 } ∈ 𝐸 ) |
40 |
|
prcom |
⊢ { 𝑦 , 𝑎 } = { 𝑎 , 𝑦 } |
41 |
|
preq2 |
⊢ ( 𝑏 = 𝑦 → { 𝑎 , 𝑏 } = { 𝑎 , 𝑦 } ) |
42 |
41
|
eleq1d |
⊢ ( 𝑏 = 𝑦 → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { 𝑎 , 𝑦 } ∈ 𝐸 ) ) |
43 |
10 42
|
rspc2v |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑦 } ∈ 𝐸 ) ) |
44 |
43
|
ad2ant2rl |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑦 } ∈ 𝐸 ) ) |
45 |
44
|
impcom |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) → { 𝑎 , 𝑦 } ∈ 𝐸 ) |
46 |
40 45
|
eqeltrid |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) → { 𝑦 , 𝑎 } ∈ 𝐸 ) |
47 |
39 46
|
jca |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) |
48 |
47
|
ex |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 { 𝑧 , 𝑏 } ∈ 𝐸 → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) |
49 |
8 48
|
syl |
⊢ ( 𝐺 ∈ FriendGraph → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑎 ≠ 𝑥 ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) |
51 |
50
|
impl |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎 ≠ 𝑥 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) |
52 |
51
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎 ≠ 𝑥 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ≠ 𝑦 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) |
53 |
7 34 52
|
3jca |
⊢ ( ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎 ≠ 𝑥 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ≠ 𝑦 ) → ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) |
54 |
53
|
ex |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎 ≠ 𝑥 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ≠ 𝑦 → ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) ) |
55 |
54
|
reximdvva |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑎 ≠ 𝑥 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑏 ≠ 𝑦 → ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) ) |
56 |
55
|
exp31 |
⊢ ( 𝐺 ∈ FriendGraph → ( 𝑎 ≠ 𝑥 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑏 ≠ 𝑦 → ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) ) ) ) |
57 |
56
|
com24 |
⊢ ( 𝐺 ∈ FriendGraph → ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑏 ≠ 𝑦 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑎 ≠ 𝑥 → ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) ) ) ) |
58 |
57
|
imp31 |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑏 ≠ 𝑦 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝑎 ≠ 𝑥 → ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) ) |
59 |
58
|
reximdvva |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑏 ≠ 𝑦 ) → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 𝑎 ≠ 𝑥 → ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) ) |
60 |
59
|
ex |
⊢ ( 𝐺 ∈ FriendGraph → ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑏 ≠ 𝑦 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 𝑎 ≠ 𝑥 → ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) ) ) |
61 |
60
|
com13 |
⊢ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 𝑎 ≠ 𝑥 → ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑏 ≠ 𝑦 → ( 𝐺 ∈ FriendGraph → ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) ) ) |
62 |
61
|
imp |
⊢ ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 𝑎 ≠ 𝑥 ∧ ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑏 ≠ 𝑦 ) → ( 𝐺 ∈ FriendGraph → ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) ) |
63 |
1 2 3 4
|
frgrwopreglem1 |
⊢ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) |
64 |
|
hashgt12el |
⊢ ( ( 𝐴 ∈ V ∧ 1 < ( ♯ ‘ 𝐴 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 𝑎 ≠ 𝑥 ) |
65 |
64
|
ex |
⊢ ( 𝐴 ∈ V → ( 1 < ( ♯ ‘ 𝐴 ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 𝑎 ≠ 𝑥 ) ) |
66 |
|
hashgt12el |
⊢ ( ( 𝐵 ∈ V ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑏 ≠ 𝑦 ) |
67 |
66
|
ex |
⊢ ( 𝐵 ∈ V → ( 1 < ( ♯ ‘ 𝐵 ) → ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑏 ≠ 𝑦 ) ) |
68 |
65 67
|
im2anan9 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 𝑎 ≠ 𝑥 ∧ ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑏 ≠ 𝑦 ) ) ) |
69 |
63 68
|
ax-mp |
⊢ ( ( 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 𝑎 ≠ 𝑥 ∧ ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑏 ≠ 𝑦 ) ) |
70 |
62 69
|
syl11 |
⊢ ( 𝐺 ∈ FriendGraph → ( ( 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) ) |
71 |
70
|
3impib |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑥 } ∈ 𝐸 ) ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) ) |