| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrncvvdeq.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 |  | frgrwopreglem4a.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 4 |  | id | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈   FriendGraph  ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  →  𝐴  ∈  𝑉 ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  𝐵  ∈  𝑉 ) | 
						
							| 7 | 5 6 | anim12i | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) ) | 
						
							| 8 |  | simp2 | ⊢ ( ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝑋 )  ∧  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) )  →  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 ) ) | 
						
							| 9 | 1 2 3 | frgrwopreglem4a | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 ) )  →  { 𝐴 ,  𝐵 }  ∈  𝐸 ) | 
						
							| 10 | 4 7 8 9 | syl3an | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  ∧  ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝑋 )  ∧  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) ) )  →  { 𝐴 ,  𝐵 }  ∈  𝐸 ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  →  𝑋  ∈  𝑉 ) | 
						
							| 12 | 11 6 | anim12ci | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  →  ( 𝐵  ∈  𝑉  ∧  𝑋  ∈  𝑉 ) ) | 
						
							| 13 |  | pm13.18 | ⊢ ( ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝑋 )  ∧  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 ) )  →  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝐵 ) ) | 
						
							| 14 | 13 | 3adant3 | ⊢ ( ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝑋 )  ∧  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) )  →  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝐵 ) ) | 
						
							| 15 | 14 | necomd | ⊢ ( ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝑋 )  ∧  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) )  →  ( 𝐷 ‘ 𝐵 )  ≠  ( 𝐷 ‘ 𝑋 ) ) | 
						
							| 16 | 1 2 3 | frgrwopreglem4a | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐵  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  ∧  ( 𝐷 ‘ 𝐵 )  ≠  ( 𝐷 ‘ 𝑋 ) )  →  { 𝐵 ,  𝑋 }  ∈  𝐸 ) | 
						
							| 17 | 4 12 15 16 | syl3an | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  ∧  ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝑋 )  ∧  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) ) )  →  { 𝐵 ,  𝑋 }  ∈  𝐸 ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  𝑌  ∈  𝑉 ) | 
						
							| 19 | 11 18 | anim12i | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) ) | 
						
							| 20 |  | simp3 | ⊢ ( ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝑋 )  ∧  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) )  →  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) ) | 
						
							| 21 | 1 2 3 | frgrwopreglem4a | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) | 
						
							| 22 | 4 19 20 21 | syl3an | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  ∧  ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝑋 )  ∧  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) ) )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) | 
						
							| 23 | 5 18 | anim12ci | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  →  ( 𝑌  ∈  𝑉  ∧  𝐴  ∈  𝑉 ) ) | 
						
							| 24 |  | pm13.181 | ⊢ ( ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝑋 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) )  →  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝑌 ) ) | 
						
							| 25 | 24 | 3adant2 | ⊢ ( ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝑋 )  ∧  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) )  →  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝑌 ) ) | 
						
							| 26 | 25 | necomd | ⊢ ( ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝑋 )  ∧  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) )  →  ( 𝐷 ‘ 𝑌 )  ≠  ( 𝐷 ‘ 𝐴 ) ) | 
						
							| 27 | 1 2 3 | frgrwopreglem4a | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑌  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  ∧  ( 𝐷 ‘ 𝑌 )  ≠  ( 𝐷 ‘ 𝐴 ) )  →  { 𝑌 ,  𝐴 }  ∈  𝐸 ) | 
						
							| 28 | 4 23 26 27 | syl3an | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  ∧  ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝑋 )  ∧  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) ) )  →  { 𝑌 ,  𝐴 }  ∈  𝐸 ) | 
						
							| 29 | 22 28 | jca | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  ∧  ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝑋 )  ∧  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) ) )  →  ( { 𝑋 ,  𝑌 }  ∈  𝐸  ∧  { 𝑌 ,  𝐴 }  ∈  𝐸 ) ) | 
						
							| 30 | 10 17 29 | jca31 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  ∧  ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝑋 )  ∧  ( 𝐷 ‘ 𝐴 )  ≠  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) ) )  →  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝑋 }  ∈  𝐸 )  ∧  ( { 𝑋 ,  𝑌 }  ∈  𝐸  ∧  { 𝑌 ,  𝐴 }  ∈  𝐸 ) ) ) |