| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrwopreg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
frgrwopreg.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
| 3 |
|
frgrwopreg.a |
⊢ 𝐴 = { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } |
| 4 |
|
frgrwopreg.b |
⊢ 𝐵 = ( 𝑉 ∖ 𝐴 ) |
| 5 |
|
frgrwopreg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 6 |
3
|
reqabi |
⊢ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝑉 ∧ ( 𝐷 ‘ 𝑥 ) = 𝐾 ) ) |
| 7 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑎 → ( ( 𝐷 ‘ 𝑥 ) = 𝐾 ↔ ( 𝐷 ‘ 𝑎 ) = 𝐾 ) ) |
| 8 |
7 3
|
elrab2 |
⊢ ( 𝑎 ∈ 𝐴 ↔ ( 𝑎 ∈ 𝑉 ∧ ( 𝐷 ‘ 𝑎 ) = 𝐾 ) ) |
| 9 |
|
eqtr3 |
⊢ ( ( ( 𝐷 ‘ 𝑎 ) = 𝐾 ∧ ( 𝐷 ‘ 𝑥 ) = 𝐾 ) → ( 𝐷 ‘ 𝑎 ) = ( 𝐷 ‘ 𝑥 ) ) |
| 10 |
9
|
expcom |
⊢ ( ( 𝐷 ‘ 𝑥 ) = 𝐾 → ( ( 𝐷 ‘ 𝑎 ) = 𝐾 → ( 𝐷 ‘ 𝑎 ) = ( 𝐷 ‘ 𝑥 ) ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝐷 ‘ 𝑥 ) = 𝐾 ) → ( ( 𝐷 ‘ 𝑎 ) = 𝐾 → ( 𝐷 ‘ 𝑎 ) = ( 𝐷 ‘ 𝑥 ) ) ) |
| 12 |
11
|
com12 |
⊢ ( ( 𝐷 ‘ 𝑎 ) = 𝐾 → ( ( 𝑥 ∈ 𝑉 ∧ ( 𝐷 ‘ 𝑥 ) = 𝐾 ) → ( 𝐷 ‘ 𝑎 ) = ( 𝐷 ‘ 𝑥 ) ) ) |
| 13 |
8 12
|
simplbiim |
⊢ ( 𝑎 ∈ 𝐴 → ( ( 𝑥 ∈ 𝑉 ∧ ( 𝐷 ‘ 𝑥 ) = 𝐾 ) → ( 𝐷 ‘ 𝑎 ) = ( 𝐷 ‘ 𝑥 ) ) ) |
| 14 |
6 13
|
biimtrid |
⊢ ( 𝑎 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝐷 ‘ 𝑎 ) = ( 𝐷 ‘ 𝑥 ) ) ) |
| 15 |
14
|
imp |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐷 ‘ 𝑎 ) = ( 𝐷 ‘ 𝑥 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐷 ‘ 𝑎 ) = ( 𝐷 ‘ 𝑥 ) ) |
| 17 |
1 2 3 4
|
frgrwopreglem3 |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑎 ) ≠ ( 𝐷 ‘ 𝑏 ) ) |
| 18 |
17
|
ad2ant2r |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐷 ‘ 𝑎 ) ≠ ( 𝐷 ‘ 𝑏 ) ) |
| 19 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐷 ‘ 𝑥 ) = 𝐾 ↔ ( 𝐷 ‘ 𝑧 ) = 𝐾 ) ) |
| 20 |
19
|
cbvrabv |
⊢ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } = { 𝑧 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑧 ) = 𝐾 } |
| 21 |
3 20
|
eqtri |
⊢ 𝐴 = { 𝑧 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑧 ) = 𝐾 } |
| 22 |
1 2 21 4
|
frgrwopreglem3 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑥 ) ≠ ( 𝐷 ‘ 𝑦 ) ) |
| 23 |
22
|
ad2ant2l |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐷 ‘ 𝑥 ) ≠ ( 𝐷 ‘ 𝑦 ) ) |
| 24 |
16 18 23
|
3jca |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐷 ‘ 𝑎 ) = ( 𝐷 ‘ 𝑥 ) ∧ ( 𝐷 ‘ 𝑎 ) ≠ ( 𝐷 ‘ 𝑏 ) ∧ ( 𝐷 ‘ 𝑥 ) ≠ ( 𝐷 ‘ 𝑦 ) ) ) |