Metamath Proof Explorer


Theorem frgrwopreglem5lem

Description: Lemma for frgrwopreglem5 . (Contributed by AV, 5-Feb-2022)

Ref Expression
Hypotheses frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
frgrwopreg.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion frgrwopreglem5lem ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( ( 𝐷𝑎 ) = ( 𝐷𝑥 ) ∧ ( 𝐷𝑎 ) ≠ ( 𝐷𝑏 ) ∧ ( 𝐷𝑥 ) ≠ ( 𝐷𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
4 frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
5 frgrwopreg.e 𝐸 = ( Edg ‘ 𝐺 )
6 3 rabeq2i ( 𝑥𝐴 ↔ ( 𝑥𝑉 ∧ ( 𝐷𝑥 ) = 𝐾 ) )
7 fveqeq2 ( 𝑥 = 𝑎 → ( ( 𝐷𝑥 ) = 𝐾 ↔ ( 𝐷𝑎 ) = 𝐾 ) )
8 7 3 elrab2 ( 𝑎𝐴 ↔ ( 𝑎𝑉 ∧ ( 𝐷𝑎 ) = 𝐾 ) )
9 eqtr3 ( ( ( 𝐷𝑎 ) = 𝐾 ∧ ( 𝐷𝑥 ) = 𝐾 ) → ( 𝐷𝑎 ) = ( 𝐷𝑥 ) )
10 9 expcom ( ( 𝐷𝑥 ) = 𝐾 → ( ( 𝐷𝑎 ) = 𝐾 → ( 𝐷𝑎 ) = ( 𝐷𝑥 ) ) )
11 10 adantl ( ( 𝑥𝑉 ∧ ( 𝐷𝑥 ) = 𝐾 ) → ( ( 𝐷𝑎 ) = 𝐾 → ( 𝐷𝑎 ) = ( 𝐷𝑥 ) ) )
12 11 com12 ( ( 𝐷𝑎 ) = 𝐾 → ( ( 𝑥𝑉 ∧ ( 𝐷𝑥 ) = 𝐾 ) → ( 𝐷𝑎 ) = ( 𝐷𝑥 ) ) )
13 8 12 simplbiim ( 𝑎𝐴 → ( ( 𝑥𝑉 ∧ ( 𝐷𝑥 ) = 𝐾 ) → ( 𝐷𝑎 ) = ( 𝐷𝑥 ) ) )
14 6 13 syl5bi ( 𝑎𝐴 → ( 𝑥𝐴 → ( 𝐷𝑎 ) = ( 𝐷𝑥 ) ) )
15 14 imp ( ( 𝑎𝐴𝑥𝐴 ) → ( 𝐷𝑎 ) = ( 𝐷𝑥 ) )
16 15 adantr ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( 𝐷𝑎 ) = ( 𝐷𝑥 ) )
17 1 2 3 4 frgrwopreglem3 ( ( 𝑎𝐴𝑏𝐵 ) → ( 𝐷𝑎 ) ≠ ( 𝐷𝑏 ) )
18 17 ad2ant2r ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( 𝐷𝑎 ) ≠ ( 𝐷𝑏 ) )
19 fveqeq2 ( 𝑥 = 𝑧 → ( ( 𝐷𝑥 ) = 𝐾 ↔ ( 𝐷𝑧 ) = 𝐾 ) )
20 19 cbvrabv { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 } = { 𝑧𝑉 ∣ ( 𝐷𝑧 ) = 𝐾 }
21 3 20 eqtri 𝐴 = { 𝑧𝑉 ∣ ( 𝐷𝑧 ) = 𝐾 }
22 1 2 21 4 frgrwopreglem3 ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝐷𝑥 ) ≠ ( 𝐷𝑦 ) )
23 22 ad2ant2l ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( 𝐷𝑥 ) ≠ ( 𝐷𝑦 ) )
24 16 18 23 3jca ( ( ( 𝑎𝐴𝑥𝐴 ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( ( 𝐷𝑎 ) = ( 𝐷𝑥 ) ∧ ( 𝐷𝑎 ) ≠ ( 𝐷𝑏 ) ∧ ( 𝐷𝑥 ) ≠ ( 𝐷𝑦 ) ) )