| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-fr |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ) ) |
| 2 |
|
sseq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
| 3 |
|
neeq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) |
| 4 |
2 3
|
anbi12d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) ) |
| 5 |
|
raleq |
⊢ ( 𝑧 = 𝐵 → ( ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) |
| 6 |
5
|
rexeqbi1dv |
⊢ ( 𝑧 = 𝐵 → ( ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) |
| 7 |
4 6
|
imbi12d |
⊢ ( 𝑧 = 𝐵 → ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) ) |
| 8 |
7
|
spcgv |
⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ) → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) ) |
| 9 |
1 8
|
biimtrid |
⊢ ( 𝐵 ∈ 𝐶 → ( 𝑅 Fr 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) ) |
| 10 |
9
|
imp31 |
⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |