Step |
Hyp |
Ref |
Expression |
1 |
|
friendship.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
simpr1 |
⊢ ( ( 3 < ( ♯ ‘ 𝑉 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → 𝐺 ∈ FriendGraph ) |
3 |
|
simpr3 |
⊢ ( ( 3 < ( ♯ ‘ 𝑉 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → 𝑉 ∈ Fin ) |
4 |
|
simpl |
⊢ ( ( 3 < ( ♯ ‘ 𝑉 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → 3 < ( ♯ ‘ 𝑉 ) ) |
5 |
1
|
friendshipgt3 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) |
6 |
2 3 4 5
|
syl3anc |
⊢ ( ( 3 < ( ♯ ‘ 𝑉 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) |
7 |
6
|
ex |
⊢ ( 3 < ( ♯ ‘ 𝑉 ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
8 |
|
hashcl |
⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
9 |
|
simplr |
⊢ ( ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ) ∧ ( ¬ 3 < ( ♯ ‘ 𝑉 ) ∧ 𝑉 ≠ ∅ ) ) → 𝑉 ∈ Fin ) |
10 |
|
hashge1 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → 1 ≤ ( ♯ ‘ 𝑉 ) ) |
11 |
10
|
ad2ant2l |
⊢ ( ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ) ∧ ( ¬ 3 < ( ♯ ‘ 𝑉 ) ∧ 𝑉 ≠ ∅ ) ) → 1 ≤ ( ♯ ‘ 𝑉 ) ) |
12 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ♯ ‘ 𝑉 ) ∈ ℝ ) |
13 |
|
3re |
⊢ 3 ∈ ℝ |
14 |
|
lenlt |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℝ ∧ 3 ∈ ℝ ) → ( ( ♯ ‘ 𝑉 ) ≤ 3 ↔ ¬ 3 < ( ♯ ‘ 𝑉 ) ) ) |
15 |
12 13 14
|
sylancl |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑉 ) ≤ 3 ↔ ¬ 3 < ( ♯ ‘ 𝑉 ) ) ) |
16 |
15
|
biimprd |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ¬ 3 < ( ♯ ‘ 𝑉 ) → ( ♯ ‘ 𝑉 ) ≤ 3 ) ) |
17 |
16
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ) → ( ¬ 3 < ( ♯ ‘ 𝑉 ) → ( ♯ ‘ 𝑉 ) ≤ 3 ) ) |
18 |
17
|
com12 |
⊢ ( ¬ 3 < ( ♯ ‘ 𝑉 ) → ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ) → ( ♯ ‘ 𝑉 ) ≤ 3 ) ) |
19 |
18
|
adantr |
⊢ ( ( ¬ 3 < ( ♯ ‘ 𝑉 ) ∧ 𝑉 ≠ ∅ ) → ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ) → ( ♯ ‘ 𝑉 ) ≤ 3 ) ) |
20 |
19
|
impcom |
⊢ ( ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ) ∧ ( ¬ 3 < ( ♯ ‘ 𝑉 ) ∧ 𝑉 ≠ ∅ ) ) → ( ♯ ‘ 𝑉 ) ≤ 3 ) |
21 |
9 11 20
|
3jca |
⊢ ( ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ) ∧ ( ¬ 3 < ( ♯ ‘ 𝑉 ) ∧ 𝑉 ≠ ∅ ) ) → ( 𝑉 ∈ Fin ∧ 1 ≤ ( ♯ ‘ 𝑉 ) ∧ ( ♯ ‘ 𝑉 ) ≤ 3 ) ) |
22 |
21
|
exp31 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( 𝑉 ∈ Fin → ( ( ¬ 3 < ( ♯ ‘ 𝑉 ) ∧ 𝑉 ≠ ∅ ) → ( 𝑉 ∈ Fin ∧ 1 ≤ ( ♯ ‘ 𝑉 ) ∧ ( ♯ ‘ 𝑉 ) ≤ 3 ) ) ) ) |
23 |
8 22
|
mpcom |
⊢ ( 𝑉 ∈ Fin → ( ( ¬ 3 < ( ♯ ‘ 𝑉 ) ∧ 𝑉 ≠ ∅ ) → ( 𝑉 ∈ Fin ∧ 1 ≤ ( ♯ ‘ 𝑉 ) ∧ ( ♯ ‘ 𝑉 ) ≤ 3 ) ) ) |
24 |
23
|
impcom |
⊢ ( ( ( ¬ 3 < ( ♯ ‘ 𝑉 ) ∧ 𝑉 ≠ ∅ ) ∧ 𝑉 ∈ Fin ) → ( 𝑉 ∈ Fin ∧ 1 ≤ ( ♯ ‘ 𝑉 ) ∧ ( ♯ ‘ 𝑉 ) ≤ 3 ) ) |
25 |
|
hash1to3 |
⊢ ( ( 𝑉 ∈ Fin ∧ 1 ≤ ( ♯ ‘ 𝑉 ) ∧ ( ♯ ‘ 𝑉 ) ≤ 3 ) → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( 𝑉 = { 𝑎 } ∨ 𝑉 = { 𝑎 , 𝑏 } ∨ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) |
26 |
|
vex |
⊢ 𝑎 ∈ V |
27 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
28 |
1 27
|
1to3vfriendship |
⊢ ( ( 𝑎 ∈ V ∧ ( 𝑉 = { 𝑎 } ∨ 𝑉 = { 𝑎 , 𝑏 } ∨ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) → ( 𝐺 ∈ FriendGraph → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
29 |
26 28
|
mpan |
⊢ ( ( 𝑉 = { 𝑎 } ∨ 𝑉 = { 𝑎 , 𝑏 } ∨ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( 𝐺 ∈ FriendGraph → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
30 |
29
|
exlimiv |
⊢ ( ∃ 𝑐 ( 𝑉 = { 𝑎 } ∨ 𝑉 = { 𝑎 , 𝑏 } ∨ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( 𝐺 ∈ FriendGraph → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
31 |
30
|
exlimivv |
⊢ ( ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( 𝑉 = { 𝑎 } ∨ 𝑉 = { 𝑎 , 𝑏 } ∨ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( 𝐺 ∈ FriendGraph → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
32 |
24 25 31
|
3syl |
⊢ ( ( ( ¬ 3 < ( ♯ ‘ 𝑉 ) ∧ 𝑉 ≠ ∅ ) ∧ 𝑉 ∈ Fin ) → ( 𝐺 ∈ FriendGraph → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
33 |
32
|
exp31 |
⊢ ( ¬ 3 < ( ♯ ‘ 𝑉 ) → ( 𝑉 ≠ ∅ → ( 𝑉 ∈ Fin → ( 𝐺 ∈ FriendGraph → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
34 |
33
|
com14 |
⊢ ( 𝐺 ∈ FriendGraph → ( 𝑉 ≠ ∅ → ( 𝑉 ∈ Fin → ( ¬ 3 < ( ♯ ‘ 𝑉 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
35 |
34
|
3imp |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) → ( ¬ 3 < ( ♯ ‘ 𝑉 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
36 |
35
|
com12 |
⊢ ( ¬ 3 < ( ♯ ‘ 𝑉 ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
37 |
7 36
|
pm2.61i |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) |