Step |
Hyp |
Ref |
Expression |
1 |
|
frgrreggt1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
frgrregorufrg |
⊢ ( 𝐺 ∈ FriendGraph → ∀ 𝑘 ∈ ℕ0 ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ∀ 𝑘 ∈ ℕ0 ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
5 |
1
|
frgrogt3nreg |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ∀ 𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 ) |
6 |
|
frgrusgr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
7 |
6
|
anim1i |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) → ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
8 |
1
|
isfusgr |
⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
9 |
7 8
|
sylibr |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) → 𝐺 ∈ FinUSGraph ) |
10 |
9
|
3adant3 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 𝐺 ∈ FinUSGraph ) |
11 |
|
0red |
⊢ ( ( 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 0 ∈ ℝ ) |
12 |
|
3re |
⊢ 3 ∈ ℝ |
13 |
12
|
a1i |
⊢ ( ( 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 3 ∈ ℝ ) |
14 |
|
hashcl |
⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
15 |
14
|
nn0red |
⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℝ ) |
16 |
15
|
adantr |
⊢ ( ( 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ♯ ‘ 𝑉 ) ∈ ℝ ) |
17 |
|
3pos |
⊢ 0 < 3 |
18 |
17
|
a1i |
⊢ ( ( 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 0 < 3 ) |
19 |
|
simpr |
⊢ ( ( 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 3 < ( ♯ ‘ 𝑉 ) ) |
20 |
11 13 16 18 19
|
lttrd |
⊢ ( ( 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 0 < ( ♯ ‘ 𝑉 ) ) |
21 |
20
|
gt0ne0d |
⊢ ( ( 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ♯ ‘ 𝑉 ) ≠ 0 ) |
22 |
|
hasheq0 |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = 0 ↔ 𝑉 = ∅ ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ( ♯ ‘ 𝑉 ) = 0 ↔ 𝑉 = ∅ ) ) |
24 |
23
|
necon3bid |
⊢ ( ( 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ( ♯ ‘ 𝑉 ) ≠ 0 ↔ 𝑉 ≠ ∅ ) ) |
25 |
21 24
|
mpbid |
⊢ ( ( 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 𝑉 ≠ ∅ ) |
26 |
25
|
3adant1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 𝑉 ≠ ∅ ) |
27 |
1
|
fusgrn0degnn0 |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ∃ 𝑡 ∈ 𝑉 ∃ 𝑚 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) |
28 |
10 26 27
|
syl2anc |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑡 ∈ 𝑉 ∃ 𝑚 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) |
29 |
|
r19.26 |
⊢ ( ∀ 𝑘 ∈ ℕ0 ( ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ¬ 𝐺 RegUSGraph 𝑘 ) ↔ ( ∀ 𝑘 ∈ ℕ0 ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ∀ 𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 ) ) |
30 |
|
simpllr |
⊢ ( ( ( ( 𝑡 ∈ 𝑉 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ) → 𝑚 ∈ ℕ0 ) |
31 |
|
fveqeq2 |
⊢ ( 𝑢 = 𝑡 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑚 ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) ) |
32 |
31
|
rspcev |
⊢ ( ( 𝑡 ∈ 𝑉 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) → ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑚 ) |
33 |
32
|
ad4ant13 |
⊢ ( ( ( ( 𝑡 ∈ 𝑉 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ) → ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑚 ) |
34 |
|
ornld |
⊢ ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑚 → ( ( ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑚 → ( 𝐺 RegUSGraph 𝑚 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ¬ 𝐺 RegUSGraph 𝑚 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
35 |
33 34
|
syl |
⊢ ( ( ( ( 𝑡 ∈ 𝑉 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ) → ( ( ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑚 → ( 𝐺 RegUSGraph 𝑚 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ¬ 𝐺 RegUSGraph 𝑚 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( ( 𝑡 ∈ 𝑉 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ) ∧ 𝑘 = 𝑚 ) → ( ( ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑚 → ( 𝐺 RegUSGraph 𝑚 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ¬ 𝐺 RegUSGraph 𝑚 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
37 |
|
eqeq2 |
⊢ ( 𝑘 = 𝑚 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑚 ) ) |
38 |
37
|
rexbidv |
⊢ ( 𝑘 = 𝑚 → ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 ↔ ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑚 ) ) |
39 |
|
breq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐺 RegUSGraph 𝑘 ↔ 𝐺 RegUSGraph 𝑚 ) ) |
40 |
39
|
orbi1d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝐺 RegUSGraph 𝑚 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
41 |
38 40
|
imbi12d |
⊢ ( 𝑘 = 𝑚 → ( ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ↔ ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑚 → ( 𝐺 RegUSGraph 𝑚 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
42 |
39
|
notbid |
⊢ ( 𝑘 = 𝑚 → ( ¬ 𝐺 RegUSGraph 𝑘 ↔ ¬ 𝐺 RegUSGraph 𝑚 ) ) |
43 |
41 42
|
anbi12d |
⊢ ( 𝑘 = 𝑚 → ( ( ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ¬ 𝐺 RegUSGraph 𝑘 ) ↔ ( ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑚 → ( 𝐺 RegUSGraph 𝑚 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ¬ 𝐺 RegUSGraph 𝑚 ) ) ) |
44 |
43
|
imbi1d |
⊢ ( 𝑘 = 𝑚 → ( ( ( ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ¬ 𝐺 RegUSGraph 𝑘 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ( ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑚 → ( 𝐺 RegUSGraph 𝑚 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ¬ 𝐺 RegUSGraph 𝑚 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
45 |
44
|
adantl |
⊢ ( ( ( ( ( 𝑡 ∈ 𝑉 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ) ∧ 𝑘 = 𝑚 ) → ( ( ( ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ¬ 𝐺 RegUSGraph 𝑘 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ( ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑚 → ( 𝐺 RegUSGraph 𝑚 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ¬ 𝐺 RegUSGraph 𝑚 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
46 |
36 45
|
mpbird |
⊢ ( ( ( ( ( 𝑡 ∈ 𝑉 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ) ∧ 𝑘 = 𝑚 ) → ( ( ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ¬ 𝐺 RegUSGraph 𝑘 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
47 |
30 46
|
rspcimdv |
⊢ ( ( ( ( 𝑡 ∈ 𝑉 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ) → ( ∀ 𝑘 ∈ ℕ0 ( ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ¬ 𝐺 RegUSGraph 𝑘 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
48 |
47
|
com12 |
⊢ ( ∀ 𝑘 ∈ ℕ0 ( ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ¬ 𝐺 RegUSGraph 𝑘 ) → ( ( ( ( 𝑡 ∈ 𝑉 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
49 |
29 48
|
sylbir |
⊢ ( ( ∀ 𝑘 ∈ ℕ0 ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ∀ 𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 ) → ( ( ( ( 𝑡 ∈ 𝑉 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) |
50 |
49
|
expcom |
⊢ ( ∀ 𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ( ∀ 𝑘 ∈ ℕ0 ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( ( ( 𝑡 ∈ 𝑉 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
51 |
50
|
com13 |
⊢ ( ( ( ( 𝑡 ∈ 𝑉 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ) → ( ∀ 𝑘 ∈ ℕ0 ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ∀ 𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
52 |
51
|
exp31 |
⊢ ( ( 𝑡 ∈ 𝑉 ∧ 𝑚 ∈ ℕ0 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 → ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ∀ 𝑘 ∈ ℕ0 ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ∀ 𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) ) |
53 |
52
|
rexlimivv |
⊢ ( ∃ 𝑡 ∈ 𝑉 ∃ 𝑚 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑡 ) = 𝑚 → ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ∀ 𝑘 ∈ ℕ0 ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ∀ 𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
54 |
28 53
|
mpcom |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ∀ 𝑘 ∈ ℕ0 ( ∃ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ∀ 𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
55 |
4 5 54
|
mp2d |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ ( Edg ‘ 𝐺 ) ) |