| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssdif0 | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∖  𝐵 )  =  ∅ ) | 
						
							| 2 | 1 | necon3bbii | ⊢ ( ¬  𝐴  ⊆  𝐵  ↔  ( 𝐴  ∖  𝐵 )  ≠  ∅ ) | 
						
							| 3 |  | difss | ⊢ ( 𝐴  ∖  𝐵 )  ⊆  𝐴 | 
						
							| 4 |  | frmin | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( ( 𝐴  ∖  𝐵 )  ⊆  𝐴  ∧  ( 𝐴  ∖  𝐵 )  ≠  ∅ ) )  →  ∃ 𝑦  ∈  ( 𝐴  ∖  𝐵 ) Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅ ) | 
						
							| 5 |  | eldif | ⊢ ( 𝑦  ∈  ( 𝐴  ∖  𝐵 )  ↔  ( 𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  𝐵 ) ) | 
						
							| 6 | 5 | anbi1i | ⊢ ( ( 𝑦  ∈  ( 𝐴  ∖  𝐵 )  ∧  Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅ )  ↔  ( ( 𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  𝐵 )  ∧  Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅ ) ) | 
						
							| 7 |  | anass | ⊢ ( ( ( 𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  𝐵 )  ∧  Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅ )  ↔  ( 𝑦  ∈  𝐴  ∧  ( ¬  𝑦  ∈  𝐵  ∧  Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅ ) ) ) | 
						
							| 8 |  | ancom | ⊢ ( ( ¬  𝑦  ∈  𝐵  ∧  Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅ )  ↔  ( Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅  ∧  ¬  𝑦  ∈  𝐵 ) ) | 
						
							| 9 |  | indif2 | ⊢ ( ( ◡ 𝑅  “  { 𝑦 } )  ∩  ( 𝐴  ∖  𝐵 ) )  =  ( ( ( ◡ 𝑅  “  { 𝑦 } )  ∩  𝐴 )  ∖  𝐵 ) | 
						
							| 10 |  | df-pred | ⊢ Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ( ( 𝐴  ∖  𝐵 )  ∩  ( ◡ 𝑅  “  { 𝑦 } ) ) | 
						
							| 11 |  | incom | ⊢ ( ( 𝐴  ∖  𝐵 )  ∩  ( ◡ 𝑅  “  { 𝑦 } ) )  =  ( ( ◡ 𝑅  “  { 𝑦 } )  ∩  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 12 | 10 11 | eqtri | ⊢ Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ( ( ◡ 𝑅  “  { 𝑦 } )  ∩  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 13 |  | df-pred | ⊢ Pred ( 𝑅 ,  𝐴 ,  𝑦 )  =  ( 𝐴  ∩  ( ◡ 𝑅  “  { 𝑦 } ) ) | 
						
							| 14 |  | incom | ⊢ ( 𝐴  ∩  ( ◡ 𝑅  “  { 𝑦 } ) )  =  ( ( ◡ 𝑅  “  { 𝑦 } )  ∩  𝐴 ) | 
						
							| 15 | 13 14 | eqtri | ⊢ Pred ( 𝑅 ,  𝐴 ,  𝑦 )  =  ( ( ◡ 𝑅  “  { 𝑦 } )  ∩  𝐴 ) | 
						
							| 16 | 15 | difeq1i | ⊢ ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ∖  𝐵 )  =  ( ( ( ◡ 𝑅  “  { 𝑦 } )  ∩  𝐴 )  ∖  𝐵 ) | 
						
							| 17 | 9 12 16 | 3eqtr4i | ⊢ Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ∖  𝐵 ) | 
						
							| 18 | 17 | eqeq1i | ⊢ ( Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅  ↔  ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ∖  𝐵 )  =  ∅ ) | 
						
							| 19 |  | ssdif0 | ⊢ ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  ↔  ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ∖  𝐵 )  =  ∅ ) | 
						
							| 20 | 18 19 | bitr4i | ⊢ ( Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅  ↔  Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵 ) | 
						
							| 21 | 20 | anbi1i | ⊢ ( ( Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅  ∧  ¬  𝑦  ∈  𝐵 )  ↔  ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  ∧  ¬  𝑦  ∈  𝐵 ) ) | 
						
							| 22 | 8 21 | bitri | ⊢ ( ( ¬  𝑦  ∈  𝐵  ∧  Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅ )  ↔  ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  ∧  ¬  𝑦  ∈  𝐵 ) ) | 
						
							| 23 | 22 | anbi2i | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ( ¬  𝑦  ∈  𝐵  ∧  Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅ ) )  ↔  ( 𝑦  ∈  𝐴  ∧  ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  ∧  ¬  𝑦  ∈  𝐵 ) ) ) | 
						
							| 24 | 6 7 23 | 3bitri | ⊢ ( ( 𝑦  ∈  ( 𝐴  ∖  𝐵 )  ∧  Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅ )  ↔  ( 𝑦  ∈  𝐴  ∧  ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  ∧  ¬  𝑦  ∈  𝐵 ) ) ) | 
						
							| 25 | 24 | rexbii2 | ⊢ ( ∃ 𝑦  ∈  ( 𝐴  ∖  𝐵 ) Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅  ↔  ∃ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  ∧  ¬  𝑦  ∈  𝐵 ) ) | 
						
							| 26 |  | rexanali | ⊢ ( ∃ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  ∧  ¬  𝑦  ∈  𝐵 )  ↔  ¬  ∀ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  →  𝑦  ∈  𝐵 ) ) | 
						
							| 27 | 25 26 | bitri | ⊢ ( ∃ 𝑦  ∈  ( 𝐴  ∖  𝐵 ) Pred ( 𝑅 ,  ( 𝐴  ∖  𝐵 ) ,  𝑦 )  =  ∅  ↔  ¬  ∀ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  →  𝑦  ∈  𝐵 ) ) | 
						
							| 28 | 4 27 | sylib | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( ( 𝐴  ∖  𝐵 )  ⊆  𝐴  ∧  ( 𝐴  ∖  𝐵 )  ≠  ∅ ) )  →  ¬  ∀ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  →  𝑦  ∈  𝐵 ) ) | 
						
							| 29 | 28 | ex | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ( ( ( 𝐴  ∖  𝐵 )  ⊆  𝐴  ∧  ( 𝐴  ∖  𝐵 )  ≠  ∅ )  →  ¬  ∀ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  →  𝑦  ∈  𝐵 ) ) ) | 
						
							| 30 | 3 29 | mpani | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ( ( 𝐴  ∖  𝐵 )  ≠  ∅  →  ¬  ∀ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  →  𝑦  ∈  𝐵 ) ) ) | 
						
							| 31 | 2 30 | biimtrid | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ( ¬  𝐴  ⊆  𝐵  →  ¬  ∀ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  →  𝑦  ∈  𝐵 ) ) ) | 
						
							| 32 | 31 | con4d | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ( ∀ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  →  𝑦  ∈  𝐵 )  →  𝐴  ⊆  𝐵 ) ) | 
						
							| 33 | 32 | imp | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ∀ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  →  𝑦  ∈  𝐵 ) )  →  𝐴  ⊆  𝐵 ) | 
						
							| 34 | 33 | adantrl | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐵  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  →  𝑦  ∈  𝐵 ) ) )  →  𝐴  ⊆  𝐵 ) | 
						
							| 35 |  | simprl | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐵  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  →  𝑦  ∈  𝐵 ) ) )  →  𝐵  ⊆  𝐴 ) | 
						
							| 36 | 34 35 | eqssd | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐵  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  →  𝑦  ∈  𝐵 ) ) )  →  𝐴  =  𝐵 ) |