Metamath Proof Explorer


Theorem frinfm

Description: A subset of a well-founded set has an infimum. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion frinfm ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵𝐶𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 fri ( ( ( 𝐵𝐶𝑅 Fr 𝐴 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
2 1 ancom1s ( ( ( 𝑅 Fr 𝐴𝐵𝐶 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
3 2 exp43 ( 𝑅 Fr 𝐴 → ( 𝐵𝐶 → ( 𝐵𝐴 → ( 𝐵 ≠ ∅ → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) ) ) )
4 3 3imp2 ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵𝐶𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
5 ssel2 ( ( 𝐵𝐴𝑥𝐵 ) → 𝑥𝐴 )
6 5 adantrr ( ( 𝐵𝐴 ∧ ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) ) → 𝑥𝐴 )
7 vex 𝑥 ∈ V
8 vex 𝑦 ∈ V
9 7 8 brcnv ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 )
10 9 biimpi ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 )
11 10 con3i ( ¬ 𝑦 𝑅 𝑥 → ¬ 𝑥 𝑅 𝑦 )
12 11 ralimi ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 → ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 )
13 12 ad2antll ( ( 𝐵𝐴 ∧ ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) ) → ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 )
14 breq2 ( 𝑧 = 𝑥 → ( 𝑦 𝑅 𝑧𝑦 𝑅 𝑥 ) )
15 14 rspcev ( ( 𝑥𝐵𝑦 𝑅 𝑥 ) → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 )
16 15 ex ( 𝑥𝐵 → ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) )
17 16 ralrimivw ( 𝑥𝐵 → ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) )
18 17 ad2antrl ( ( 𝐵𝐴 ∧ ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) ) → ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) )
19 6 13 18 jca32 ( ( 𝐵𝐴 ∧ ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) ) → ( 𝑥𝐴 ∧ ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) ) )
20 19 ex ( 𝐵𝐴 → ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) → ( 𝑥𝐴 ∧ ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) ) ) )
21 20 reximdv2 ( 𝐵𝐴 → ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) ) )
22 21 adantl ( ( 𝑅 Fr 𝐴𝐵𝐴 ) → ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) ) )
23 22 3ad2antr2 ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵𝐶𝐵𝐴𝐵 ≠ ∅ ) ) → ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) ) )
24 4 23 mpd ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵𝐶𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) )