Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Infinity Well-Founded Induction frins2  
				
		 
		
			
		 
		Description:   Well-Founded Induction schema, using implicit substitution.
       (Contributed by Scott Fenton , 8-Feb-2011)   (Revised by Mario Carneiro , 26-Jun-2015) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						frins2.1 ⊢  ( 𝑦   ∈  𝐴   →  ( ∀ 𝑧   ∈  Pred ( 𝑅  ,  𝐴  ,  𝑦  ) 𝜓   →  𝜑  ) )  
					
						frins2.3 ⊢  ( 𝑦   =  𝑧   →  ( 𝜑   ↔  𝜓  ) )  
				
					Assertion 
					frins2 ⊢   ( ( 𝑅   Fr  𝐴   ∧  𝑅   Se  𝐴  )  →  ∀ 𝑦   ∈  𝐴  𝜑  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							frins2.1 ⊢  ( 𝑦   ∈  𝐴   →  ( ∀ 𝑧   ∈  Pred ( 𝑅  ,  𝐴  ,  𝑦  ) 𝜓   →  𝜑  ) )  
						
							2 
								
							 
							frins2.3 ⊢  ( 𝑦   =  𝑧   →  ( 𝜑   ↔  𝜓  ) )  
						
							3 
								
							 
							nfv ⊢  Ⅎ 𝑦  𝜓   
						
							4 
								1  3  2 
							 
							frins2f ⊢  ( ( 𝑅   Fr  𝐴   ∧  𝑅   Se  𝐴  )  →  ∀ 𝑦   ∈  𝐴  𝜑  )