Description: Elements of the free module are functions. (Contributed by Stefan O'Rear, 3-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
frlmbasmap.n | ⊢ 𝑁 = ( Base ‘ 𝑅 ) | ||
frlmbasmap.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
Assertion | frlmbasf | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 : 𝐼 ⟶ 𝑁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
2 | frlmbasmap.n | ⊢ 𝑁 = ( Base ‘ 𝑅 ) | |
3 | frlmbasmap.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
4 | 1 2 3 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ ( 𝑁 ↑m 𝐼 ) ) |
5 | 2 | fvexi | ⊢ 𝑁 ∈ V |
6 | elmapg | ⊢ ( ( 𝑁 ∈ V ∧ 𝐼 ∈ 𝑊 ) → ( 𝑋 ∈ ( 𝑁 ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ 𝑁 ) ) | |
7 | 5 6 | mpan | ⊢ ( 𝐼 ∈ 𝑊 → ( 𝑋 ∈ ( 𝑁 ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ 𝑁 ) ) |
8 | 7 | adantr | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ ( 𝑁 ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ 𝑁 ) ) |
9 | 4 8 | mpbid | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 : 𝐼 ⟶ 𝑁 ) |