Metamath Proof Explorer


Theorem frlmbasf

Description: Elements of the free module are functions. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses frlmval.f 𝐹 = ( 𝑅 freeLMod 𝐼 )
frlmbasmap.n 𝑁 = ( Base ‘ 𝑅 )
frlmbasmap.b 𝐵 = ( Base ‘ 𝐹 )
Assertion frlmbasf ( ( 𝐼𝑊𝑋𝐵 ) → 𝑋 : 𝐼𝑁 )

Proof

Step Hyp Ref Expression
1 frlmval.f 𝐹 = ( 𝑅 freeLMod 𝐼 )
2 frlmbasmap.n 𝑁 = ( Base ‘ 𝑅 )
3 frlmbasmap.b 𝐵 = ( Base ‘ 𝐹 )
4 1 2 3 frlmbasmap ( ( 𝐼𝑊𝑋𝐵 ) → 𝑋 ∈ ( 𝑁m 𝐼 ) )
5 2 fvexi 𝑁 ∈ V
6 elmapg ( ( 𝑁 ∈ V ∧ 𝐼𝑊 ) → ( 𝑋 ∈ ( 𝑁m 𝐼 ) ↔ 𝑋 : 𝐼𝑁 ) )
7 5 6 mpan ( 𝐼𝑊 → ( 𝑋 ∈ ( 𝑁m 𝐼 ) ↔ 𝑋 : 𝐼𝑁 ) )
8 7 adantr ( ( 𝐼𝑊𝑋𝐵 ) → ( 𝑋 ∈ ( 𝑁m 𝐼 ) ↔ 𝑋 : 𝐼𝑁 ) )
9 4 8 mpbid ( ( 𝐼𝑊𝑋𝐵 ) → 𝑋 : 𝐼𝑁 )