| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frlmval.f | ⊢ 𝐹  =  ( 𝑅  freeLMod  𝐼 ) | 
						
							| 2 |  | frlmbasfsupp.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | frlmbasfsupp.b | ⊢ 𝐵  =  ( Base ‘ 𝐹 ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 5 | 1 3 | frlmrcl | ⊢ ( 𝑋  ∈  𝐵  →  𝑅  ∈  V ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑋  ∈  𝐵 )  →  𝐼  ∈  𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 8 | 1 7 2 3 | frlmelbas | ⊢ ( ( 𝑅  ∈  V  ∧  𝐼  ∈  𝑊 )  →  ( 𝑋  ∈  𝐵  ↔  ( 𝑋  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 )  ∧  𝑋  finSupp   0  ) ) ) | 
						
							| 9 | 5 6 8 | syl2an2 | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∈  𝐵  ↔  ( 𝑋  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 )  ∧  𝑋  finSupp   0  ) ) ) | 
						
							| 10 | 4 9 | mpbid | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 )  ∧  𝑋  finSupp   0  ) ) | 
						
							| 11 | 10 | simprd | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑋  ∈  𝐵 )  →  𝑋  finSupp   0  ) |