Step |
Hyp |
Ref |
Expression |
1 |
|
frlmphl.y |
⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) |
2 |
|
frlmphl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
frlmphl.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( 𝑅 freeLMod 𝐼 ) = ( 𝑅 freeLMod 𝐼 ) |
5 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) |
6 |
4 5
|
frlmpws |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝑅 freeLMod 𝐼 ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
7 |
6
|
ancoms |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 freeLMod 𝐼 ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
8 |
2
|
ressid |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
9 |
|
eqidd |
⊢ ( 𝑅 ∈ 𝑉 → ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) |
10 |
2
|
eqimssi |
⊢ 𝐵 ⊆ ( Base ‘ 𝑅 ) |
11 |
10
|
a1i |
⊢ ( 𝑅 ∈ 𝑉 → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) |
12 |
9 11
|
srasca |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↾s 𝐵 ) = ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) ) |
13 |
8 12
|
eqtr3d |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 = ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) ) |
14 |
13
|
oveq1d |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) |
16 |
|
fvex |
⊢ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ∈ V |
17 |
|
rlmval |
⊢ ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) |
18 |
2
|
fveq2i |
⊢ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) |
19 |
17 18
|
eqtr4i |
⊢ ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) |
20 |
19
|
oveq1i |
⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ↑s 𝐼 ) |
21 |
|
eqid |
⊢ ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) = ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) |
22 |
20 21
|
pwsval |
⊢ ( ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ∈ V ∧ 𝐼 ∈ 𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) |
23 |
16 22
|
mpan |
⊢ ( 𝐼 ∈ 𝑊 → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) |
25 |
15 24
|
eqtr4d |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
26 |
1
|
fveq2i |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) |
27 |
26
|
a1i |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
28 |
25 27
|
oveq12d |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
29 |
7 28
|
eqtr4d |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 freeLMod 𝐼 ) = ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) |
30 |
1 29
|
eqtrid |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → 𝑌 = ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) |
31 |
30
|
fveq2d |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( ·𝑖 ‘ 𝑌 ) = ( ·𝑖 ‘ ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) ) |
32 |
|
fvex |
⊢ ( Base ‘ 𝑌 ) ∈ V |
33 |
|
eqid |
⊢ ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) = ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) |
34 |
|
eqid |
⊢ ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) |
35 |
33 34
|
ressip |
⊢ ( ( Base ‘ 𝑌 ) ∈ V → ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( ·𝑖 ‘ ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) ) |
36 |
32 35
|
ax-mp |
⊢ ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( ·𝑖 ‘ ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) |
37 |
|
eqid |
⊢ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) = ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) |
38 |
|
simpr |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ 𝑉 ) |
39 |
|
snex |
⊢ { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ∈ V |
40 |
|
xpexg |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ∈ V ) → ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ∈ V ) |
41 |
39 40
|
mpan2 |
⊢ ( 𝐼 ∈ 𝑊 → ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ∈ V ) |
42 |
41
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ∈ V ) |
43 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) |
44 |
16
|
snnz |
⊢ { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ≠ ∅ |
45 |
|
dmxp |
⊢ ( { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ≠ ∅ → dom ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) = 𝐼 ) |
46 |
44 45
|
mp1i |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) = 𝐼 ) |
47 |
37 38 42 43 46 34
|
prdsip |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( 𝑓 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) , 𝑔 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
48 |
37 38 42 43 46
|
prdsbas |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ) |
49 |
|
eqidd |
⊢ ( 𝑥 ∈ 𝐼 → ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) |
50 |
10
|
a1i |
⊢ ( 𝑥 ∈ 𝐼 → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) |
51 |
49 50
|
srabase |
⊢ ( 𝑥 ∈ 𝐼 → ( Base ‘ 𝑅 ) = ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) ) |
52 |
2
|
a1i |
⊢ ( 𝑥 ∈ 𝐼 → 𝐵 = ( Base ‘ 𝑅 ) ) |
53 |
16
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) |
54 |
53
|
fveq2d |
⊢ ( 𝑥 ∈ 𝐼 → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) ) |
55 |
51 52 54
|
3eqtr4rd |
⊢ ( 𝑥 ∈ 𝐼 → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = 𝐵 ) |
56 |
55
|
adantl |
⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = 𝐵 ) |
57 |
56
|
ixpeq2dva |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 𝐵 ) |
58 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
59 |
|
ixpconstg |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝐵 ∈ V ) → X 𝑥 ∈ 𝐼 𝐵 = ( 𝐵 ↑m 𝐼 ) ) |
60 |
58 59
|
mpan2 |
⊢ ( 𝐼 ∈ 𝑊 → X 𝑥 ∈ 𝐼 𝐵 = ( 𝐵 ↑m 𝐼 ) ) |
61 |
60
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → X 𝑥 ∈ 𝐼 𝐵 = ( 𝐵 ↑m 𝐼 ) ) |
62 |
48 57 61
|
3eqtrd |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( 𝐵 ↑m 𝐼 ) ) |
63 |
53 50
|
sraip |
⊢ ( 𝑥 ∈ 𝐼 → ( .r ‘ 𝑅 ) = ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ) |
64 |
3 63
|
eqtr2id |
⊢ ( 𝑥 ∈ 𝐼 → ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = · ) |
65 |
64
|
oveqd |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) |
66 |
65
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) |
67 |
66
|
oveq2i |
⊢ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) |
68 |
67
|
a1i |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
69 |
62 62 68
|
mpoeq123dv |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑓 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) , 𝑔 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
70 |
47 69
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
71 |
36 70
|
eqtr3id |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( ·𝑖 ‘ ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) = ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
72 |
31 71
|
eqtr2d |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ·𝑖 ‘ 𝑌 ) ) |