Metamath Proof Explorer


Theorem frlmip

Description: The inner product of a free module. (Contributed by Thierry Arnoux, 20-Jun-2019)

Ref Expression
Hypotheses frlmphl.y 𝑌 = ( 𝑅 freeLMod 𝐼 )
frlmphl.b 𝐵 = ( Base ‘ 𝑅 )
frlmphl.t · = ( .r𝑅 )
Assertion frlmip ( ( 𝐼𝑊𝑅𝑉 ) → ( 𝑓 ∈ ( 𝐵m 𝐼 ) , 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) · ( 𝑔𝑥 ) ) ) ) ) = ( ·𝑖𝑌 ) )

Proof

Step Hyp Ref Expression
1 frlmphl.y 𝑌 = ( 𝑅 freeLMod 𝐼 )
2 frlmphl.b 𝐵 = ( Base ‘ 𝑅 )
3 frlmphl.t · = ( .r𝑅 )
4 eqid ( 𝑅 freeLMod 𝐼 ) = ( 𝑅 freeLMod 𝐼 )
5 eqid ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) )
6 4 5 frlmpws ( ( 𝑅𝑉𝐼𝑊 ) → ( 𝑅 freeLMod 𝐼 ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) )
7 6 ancoms ( ( 𝐼𝑊𝑅𝑉 ) → ( 𝑅 freeLMod 𝐼 ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) )
8 2 ressid ( 𝑅𝑉 → ( 𝑅s 𝐵 ) = 𝑅 )
9 eqidd ( 𝑅𝑉 → ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) )
10 2 eqimssi 𝐵 ⊆ ( Base ‘ 𝑅 )
11 10 a1i ( 𝑅𝑉𝐵 ⊆ ( Base ‘ 𝑅 ) )
12 9 11 srasca ( 𝑅𝑉 → ( 𝑅s 𝐵 ) = ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) )
13 8 12 eqtr3d ( 𝑅𝑉𝑅 = ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) )
14 13 oveq1d ( 𝑅𝑉 → ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) )
15 14 adantl ( ( 𝐼𝑊𝑅𝑉 ) → ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) )
16 fvex ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ∈ V
17 rlmval ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) )
18 2 fveq2i ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) )
19 17 18 eqtr4i ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 )
20 19 oveq1i ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ↑s 𝐼 )
21 eqid ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) = ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) )
22 20 21 pwsval ( ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ∈ V ∧ 𝐼𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) )
23 16 22 mpan ( 𝐼𝑊 → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) )
24 23 adantr ( ( 𝐼𝑊𝑅𝑉 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) )
25 15 24 eqtr4d ( ( 𝐼𝑊𝑅𝑉 ) → ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) )
26 1 fveq2i ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) )
27 26 a1i ( ( 𝐼𝑊𝑅𝑉 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) )
28 25 27 oveq12d ( ( 𝐼𝑊𝑅𝑉 ) → ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) )
29 7 28 eqtr4d ( ( 𝐼𝑊𝑅𝑉 ) → ( 𝑅 freeLMod 𝐼 ) = ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) )
30 1 29 syl5eq ( ( 𝐼𝑊𝑅𝑉 ) → 𝑌 = ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) )
31 30 fveq2d ( ( 𝐼𝑊𝑅𝑉 ) → ( ·𝑖𝑌 ) = ( ·𝑖 ‘ ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) )
32 fvex ( Base ‘ 𝑌 ) ∈ V
33 eqid ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) = ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) )
34 eqid ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) )
35 33 34 ressip ( ( Base ‘ 𝑌 ) ∈ V → ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( ·𝑖 ‘ ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) )
36 32 35 ax-mp ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( ·𝑖 ‘ ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) )
37 eqid ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) = ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) )
38 simpr ( ( 𝐼𝑊𝑅𝑉 ) → 𝑅𝑉 )
39 snex { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ∈ V
40 xpexg ( ( 𝐼𝑊 ∧ { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ∈ V ) → ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ∈ V )
41 39 40 mpan2 ( 𝐼𝑊 → ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ∈ V )
42 41 adantr ( ( 𝐼𝑊𝑅𝑉 ) → ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ∈ V )
43 eqid ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) )
44 16 snnz { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ≠ ∅
45 dmxp ( { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ≠ ∅ → dom ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) = 𝐼 )
46 44 45 mp1i ( ( 𝐼𝑊𝑅𝑉 ) → dom ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) = 𝐼 )
47 37 38 42 43 46 34 prdsip ( ( 𝐼𝑊𝑅𝑉 ) → ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( 𝑓 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) , 𝑔 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) ↦ ( 𝑅 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) )
48 37 38 42 43 46 prdsbas ( ( 𝐼𝑊𝑅𝑉 ) → ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = X 𝑥𝐼 ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) )
49 eqidd ( 𝑥𝐼 → ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) )
50 10 a1i ( 𝑥𝐼𝐵 ⊆ ( Base ‘ 𝑅 ) )
51 49 50 srabase ( 𝑥𝐼 → ( Base ‘ 𝑅 ) = ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) )
52 2 a1i ( 𝑥𝐼𝐵 = ( Base ‘ 𝑅 ) )
53 16 fvconst2 ( 𝑥𝐼 → ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) )
54 53 fveq2d ( 𝑥𝐼 → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) )
55 51 52 54 3eqtr4rd ( 𝑥𝐼 → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = 𝐵 )
56 55 adantl ( ( ( 𝐼𝑊𝑅𝑉 ) ∧ 𝑥𝐼 ) → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = 𝐵 )
57 56 ixpeq2dva ( ( 𝐼𝑊𝑅𝑉 ) → X 𝑥𝐼 ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = X 𝑥𝐼 𝐵 )
58 2 fvexi 𝐵 ∈ V
59 ixpconstg ( ( 𝐼𝑊𝐵 ∈ V ) → X 𝑥𝐼 𝐵 = ( 𝐵m 𝐼 ) )
60 58 59 mpan2 ( 𝐼𝑊X 𝑥𝐼 𝐵 = ( 𝐵m 𝐼 ) )
61 60 adantr ( ( 𝐼𝑊𝑅𝑉 ) → X 𝑥𝐼 𝐵 = ( 𝐵m 𝐼 ) )
62 48 57 61 3eqtrd ( ( 𝐼𝑊𝑅𝑉 ) → ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( 𝐵m 𝐼 ) )
63 53 50 sraip ( 𝑥𝐼 → ( .r𝑅 ) = ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) )
64 3 63 syl5req ( 𝑥𝐼 → ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) = · )
65 64 oveqd ( 𝑥𝐼 → ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔𝑥 ) ) = ( ( 𝑓𝑥 ) · ( 𝑔𝑥 ) ) )
66 65 mpteq2ia ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔𝑥 ) ) ) = ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) · ( 𝑔𝑥 ) ) )
67 66 oveq2i ( 𝑅 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) · ( 𝑔𝑥 ) ) ) )
68 67 a1i ( ( 𝐼𝑊𝑅𝑉 ) → ( 𝑅 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) · ( 𝑔𝑥 ) ) ) ) )
69 62 62 68 mpoeq123dv ( ( 𝐼𝑊𝑅𝑉 ) → ( 𝑓 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) , 𝑔 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) ↦ ( 𝑅 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ‘ 𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) = ( 𝑓 ∈ ( 𝐵m 𝐼 ) , 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) · ( 𝑔𝑥 ) ) ) ) ) )
70 47 69 eqtrd ( ( 𝐼𝑊𝑅𝑉 ) → ( ·𝑖 ‘ ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ) = ( 𝑓 ∈ ( 𝐵m 𝐼 ) , 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) · ( 𝑔𝑥 ) ) ) ) ) )
71 36 70 eqtr3id ( ( 𝐼𝑊𝑅𝑉 ) → ( ·𝑖 ‘ ( ( 𝑅 Xs ( 𝐼 × { ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) } ) ) ↾s ( Base ‘ 𝑌 ) ) ) = ( 𝑓 ∈ ( 𝐵m 𝐼 ) , 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) · ( 𝑔𝑥 ) ) ) ) ) )
72 31 71 eqtr2d ( ( 𝐼𝑊𝑅𝑉 ) → ( 𝑓 ∈ ( 𝐵m 𝐼 ) , 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) · ( 𝑔𝑥 ) ) ) ) ) = ( ·𝑖𝑌 ) )