Step |
Hyp |
Ref |
Expression |
1 |
|
frlmlbs.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
2 |
|
frlmlbs.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
3 |
|
frlmlbs.j |
⊢ 𝐽 = ( LBasis ‘ 𝐹 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
5 |
2 1 4
|
uvcff |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑈 : 𝐼 ⟶ ( Base ‘ 𝐹 ) ) |
6 |
5
|
frnd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ran 𝑈 ⊆ ( Base ‘ 𝐹 ) ) |
7 |
|
suppssdm |
⊢ ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ dom 𝑎 |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
1 8 4
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑎 ∈ ( Base ‘ 𝐹 ) ) → 𝑎 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
10 |
9
|
adantll |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑎 ∈ ( Base ‘ 𝐹 ) ) → 𝑎 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
11 |
7 10
|
fssdm |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑎 ∈ ( Base ‘ 𝐹 ) ) → ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ 𝐼 ) |
12 |
11
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ∀ 𝑎 ∈ ( Base ‘ 𝐹 ) ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ 𝐼 ) |
13 |
|
rabid2 |
⊢ ( ( Base ‘ 𝐹 ) = { 𝑎 ∈ ( Base ‘ 𝐹 ) ∣ ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ 𝐼 } ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐹 ) ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ 𝐼 ) |
14 |
12 13
|
sylibr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( Base ‘ 𝐹 ) = { 𝑎 ∈ ( Base ‘ 𝐹 ) ∣ ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ 𝐼 } ) |
15 |
|
ssid |
⊢ 𝐼 ⊆ 𝐼 |
16 |
|
eqid |
⊢ ( LSpan ‘ 𝐹 ) = ( LSpan ‘ 𝐹 ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
18 |
|
eqid |
⊢ { 𝑎 ∈ ( Base ‘ 𝐹 ) ∣ ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ 𝐼 } = { 𝑎 ∈ ( Base ‘ 𝐹 ) ∣ ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ 𝐼 } |
19 |
1 2 16 4 17 18
|
frlmsslsp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐼 ) → ( ( LSpan ‘ 𝐹 ) ‘ ( 𝑈 “ 𝐼 ) ) = { 𝑎 ∈ ( Base ‘ 𝐹 ) ∣ ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ 𝐼 } ) |
20 |
15 19
|
mp3an3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( ( LSpan ‘ 𝐹 ) ‘ ( 𝑈 “ 𝐼 ) ) = { 𝑎 ∈ ( Base ‘ 𝐹 ) ∣ ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ 𝐼 } ) |
21 |
|
ffn |
⊢ ( 𝑈 : 𝐼 ⟶ ( Base ‘ 𝐹 ) → 𝑈 Fn 𝐼 ) |
22 |
|
fnima |
⊢ ( 𝑈 Fn 𝐼 → ( 𝑈 “ 𝐼 ) = ran 𝑈 ) |
23 |
5 21 22
|
3syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 𝑈 “ 𝐼 ) = ran 𝑈 ) |
24 |
23
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( ( LSpan ‘ 𝐹 ) ‘ ( 𝑈 “ 𝐼 ) ) = ( ( LSpan ‘ 𝐹 ) ‘ ran 𝑈 ) ) |
25 |
14 20 24
|
3eqtr2rd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( ( LSpan ‘ 𝐹 ) ‘ ran 𝑈 ) = ( Base ‘ 𝐹 ) ) |
26 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐹 ) = ( ·𝑠 ‘ 𝐹 ) |
27 |
|
eqid |
⊢ { 𝑎 ∈ ( Base ‘ 𝐹 ) ∣ ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝐼 ∖ { 𝑐 } ) } = { 𝑎 ∈ ( Base ‘ 𝐹 ) ∣ ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝐼 ∖ { 𝑐 } ) } |
28 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → 𝑅 ∈ Ring ) |
29 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → 𝐼 ∈ 𝑉 ) |
30 |
|
difssd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → ( 𝐼 ∖ { 𝑐 } ) ⊆ 𝐼 ) |
31 |
|
vsnid |
⊢ 𝑐 ∈ { 𝑐 } |
32 |
|
snssi |
⊢ ( 𝑐 ∈ 𝐼 → { 𝑐 } ⊆ 𝐼 ) |
33 |
32
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → { 𝑐 } ⊆ 𝐼 ) |
34 |
|
dfss4 |
⊢ ( { 𝑐 } ⊆ 𝐼 ↔ ( 𝐼 ∖ ( 𝐼 ∖ { 𝑐 } ) ) = { 𝑐 } ) |
35 |
33 34
|
sylib |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → ( 𝐼 ∖ ( 𝐼 ∖ { 𝑐 } ) ) = { 𝑐 } ) |
36 |
31 35
|
eleqtrrid |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → 𝑐 ∈ ( 𝐼 ∖ ( 𝐼 ∖ { 𝑐 } ) ) ) |
37 |
1
|
frlmsca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
38 |
37
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
39 |
37
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝐹 ) ) ) |
40 |
39
|
sneqd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → { ( 0g ‘ 𝑅 ) } = { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) |
41 |
38 40
|
difeq12d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) = ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) |
42 |
41
|
eleq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 𝑏 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ↔ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) |
43 |
42
|
biimpar |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) → 𝑏 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
44 |
43
|
adantrl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → 𝑏 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
45 |
1 2 4 8 26 17 27 28 29 30 36 44
|
frlmssuvc2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → ¬ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) ( 𝑈 ‘ 𝑐 ) ) ∈ { 𝑎 ∈ ( Base ‘ 𝐹 ) ∣ ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝐼 ∖ { 𝑐 } ) } ) |
46 |
17 8
|
ringelnzr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑏 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝑅 ∈ NzRing ) |
47 |
28 44 46
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → 𝑅 ∈ NzRing ) |
48 |
2 1 4
|
uvcf1 |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑉 ) → 𝑈 : 𝐼 –1-1→ ( Base ‘ 𝐹 ) ) |
49 |
47 29 48
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → 𝑈 : 𝐼 –1-1→ ( Base ‘ 𝐹 ) ) |
50 |
|
df-f1 |
⊢ ( 𝑈 : 𝐼 –1-1→ ( Base ‘ 𝐹 ) ↔ ( 𝑈 : 𝐼 ⟶ ( Base ‘ 𝐹 ) ∧ Fun ◡ 𝑈 ) ) |
51 |
50
|
simprbi |
⊢ ( 𝑈 : 𝐼 –1-1→ ( Base ‘ 𝐹 ) → Fun ◡ 𝑈 ) |
52 |
|
imadif |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( 𝐼 ∖ { 𝑐 } ) ) = ( ( 𝑈 “ 𝐼 ) ∖ ( 𝑈 “ { 𝑐 } ) ) ) |
53 |
49 51 52
|
3syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → ( 𝑈 “ ( 𝐼 ∖ { 𝑐 } ) ) = ( ( 𝑈 “ 𝐼 ) ∖ ( 𝑈 “ { 𝑐 } ) ) ) |
54 |
|
f1fn |
⊢ ( 𝑈 : 𝐼 –1-1→ ( Base ‘ 𝐹 ) → 𝑈 Fn 𝐼 ) |
55 |
49 54 22
|
3syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → ( 𝑈 “ 𝐼 ) = ran 𝑈 ) |
56 |
49 54
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → 𝑈 Fn 𝐼 ) |
57 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → 𝑐 ∈ 𝐼 ) |
58 |
|
fnsnfv |
⊢ ( ( 𝑈 Fn 𝐼 ∧ 𝑐 ∈ 𝐼 ) → { ( 𝑈 ‘ 𝑐 ) } = ( 𝑈 “ { 𝑐 } ) ) |
59 |
56 57 58
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → { ( 𝑈 ‘ 𝑐 ) } = ( 𝑈 “ { 𝑐 } ) ) |
60 |
59
|
eqcomd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → ( 𝑈 “ { 𝑐 } ) = { ( 𝑈 ‘ 𝑐 ) } ) |
61 |
55 60
|
difeq12d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → ( ( 𝑈 “ 𝐼 ) ∖ ( 𝑈 “ { 𝑐 } ) ) = ( ran 𝑈 ∖ { ( 𝑈 ‘ 𝑐 ) } ) ) |
62 |
53 61
|
eqtr2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → ( ran 𝑈 ∖ { ( 𝑈 ‘ 𝑐 ) } ) = ( 𝑈 “ ( 𝐼 ∖ { 𝑐 } ) ) ) |
63 |
62
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { ( 𝑈 ‘ 𝑐 ) } ) ) = ( ( LSpan ‘ 𝐹 ) ‘ ( 𝑈 “ ( 𝐼 ∖ { 𝑐 } ) ) ) ) |
64 |
1 2 16 4 17 27
|
frlmsslsp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ ( 𝐼 ∖ { 𝑐 } ) ⊆ 𝐼 ) → ( ( LSpan ‘ 𝐹 ) ‘ ( 𝑈 “ ( 𝐼 ∖ { 𝑐 } ) ) ) = { 𝑎 ∈ ( Base ‘ 𝐹 ) ∣ ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝐼 ∖ { 𝑐 } ) } ) |
65 |
28 29 30 64
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → ( ( LSpan ‘ 𝐹 ) ‘ ( 𝑈 “ ( 𝐼 ∖ { 𝑐 } ) ) ) = { 𝑎 ∈ ( Base ‘ 𝐹 ) ∣ ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝐼 ∖ { 𝑐 } ) } ) |
66 |
63 65
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { ( 𝑈 ‘ 𝑐 ) } ) ) = { 𝑎 ∈ ( Base ‘ 𝐹 ) ∣ ( 𝑎 supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝐼 ∖ { 𝑐 } ) } ) |
67 |
45 66
|
neleqtrrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ) ) → ¬ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) ( 𝑈 ‘ 𝑐 ) ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { ( 𝑈 ‘ 𝑐 ) } ) ) ) |
68 |
67
|
ralrimivva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ∀ 𝑐 ∈ 𝐼 ∀ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ¬ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) ( 𝑈 ‘ 𝑐 ) ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { ( 𝑈 ‘ 𝑐 ) } ) ) ) |
69 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑈 ‘ 𝑐 ) → ( 𝑏 ( ·𝑠 ‘ 𝐹 ) 𝑎 ) = ( 𝑏 ( ·𝑠 ‘ 𝐹 ) ( 𝑈 ‘ 𝑐 ) ) ) |
70 |
|
sneq |
⊢ ( 𝑎 = ( 𝑈 ‘ 𝑐 ) → { 𝑎 } = { ( 𝑈 ‘ 𝑐 ) } ) |
71 |
70
|
difeq2d |
⊢ ( 𝑎 = ( 𝑈 ‘ 𝑐 ) → ( ran 𝑈 ∖ { 𝑎 } ) = ( ran 𝑈 ∖ { ( 𝑈 ‘ 𝑐 ) } ) ) |
72 |
71
|
fveq2d |
⊢ ( 𝑎 = ( 𝑈 ‘ 𝑐 ) → ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { 𝑎 } ) ) = ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { ( 𝑈 ‘ 𝑐 ) } ) ) ) |
73 |
69 72
|
eleq12d |
⊢ ( 𝑎 = ( 𝑈 ‘ 𝑐 ) → ( ( 𝑏 ( ·𝑠 ‘ 𝐹 ) 𝑎 ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { 𝑎 } ) ) ↔ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) ( 𝑈 ‘ 𝑐 ) ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { ( 𝑈 ‘ 𝑐 ) } ) ) ) ) |
74 |
73
|
notbid |
⊢ ( 𝑎 = ( 𝑈 ‘ 𝑐 ) → ( ¬ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) 𝑎 ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { 𝑎 } ) ) ↔ ¬ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) ( 𝑈 ‘ 𝑐 ) ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { ( 𝑈 ‘ 𝑐 ) } ) ) ) ) |
75 |
74
|
ralbidv |
⊢ ( 𝑎 = ( 𝑈 ‘ 𝑐 ) → ( ∀ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ¬ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) 𝑎 ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { 𝑎 } ) ) ↔ ∀ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ¬ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) ( 𝑈 ‘ 𝑐 ) ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { ( 𝑈 ‘ 𝑐 ) } ) ) ) ) |
76 |
75
|
ralrn |
⊢ ( 𝑈 Fn 𝐼 → ( ∀ 𝑎 ∈ ran 𝑈 ∀ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ¬ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) 𝑎 ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { 𝑎 } ) ) ↔ ∀ 𝑐 ∈ 𝐼 ∀ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ¬ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) ( 𝑈 ‘ 𝑐 ) ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { ( 𝑈 ‘ 𝑐 ) } ) ) ) ) |
77 |
5 21 76
|
3syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( ∀ 𝑎 ∈ ran 𝑈 ∀ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ¬ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) 𝑎 ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { 𝑎 } ) ) ↔ ∀ 𝑐 ∈ 𝐼 ∀ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ¬ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) ( 𝑈 ‘ 𝑐 ) ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { ( 𝑈 ‘ 𝑐 ) } ) ) ) ) |
78 |
68 77
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ∀ 𝑎 ∈ ran 𝑈 ∀ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ¬ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) 𝑎 ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { 𝑎 } ) ) ) |
79 |
1
|
ovexi |
⊢ 𝐹 ∈ V |
80 |
|
eqid |
⊢ ( Scalar ‘ 𝐹 ) = ( Scalar ‘ 𝐹 ) |
81 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐹 ) ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) |
82 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐹 ) ) = ( 0g ‘ ( Scalar ‘ 𝐹 ) ) |
83 |
4 80 26 81 3 16 82
|
islbs |
⊢ ( 𝐹 ∈ V → ( ran 𝑈 ∈ 𝐽 ↔ ( ran 𝑈 ⊆ ( Base ‘ 𝐹 ) ∧ ( ( LSpan ‘ 𝐹 ) ‘ ran 𝑈 ) = ( Base ‘ 𝐹 ) ∧ ∀ 𝑎 ∈ ran 𝑈 ∀ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ¬ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) 𝑎 ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { 𝑎 } ) ) ) ) ) |
84 |
79 83
|
ax-mp |
⊢ ( ran 𝑈 ∈ 𝐽 ↔ ( ran 𝑈 ⊆ ( Base ‘ 𝐹 ) ∧ ( ( LSpan ‘ 𝐹 ) ‘ ran 𝑈 ) = ( Base ‘ 𝐹 ) ∧ ∀ 𝑎 ∈ ran 𝑈 ∀ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐹 ) ) } ) ¬ ( 𝑏 ( ·𝑠 ‘ 𝐹 ) 𝑎 ) ∈ ( ( LSpan ‘ 𝐹 ) ‘ ( ran 𝑈 ∖ { 𝑎 } ) ) ) ) |
85 |
6 25 78 84
|
syl3anbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ran 𝑈 ∈ 𝐽 ) |