| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmval.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
| 2 |
|
frlmpws.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 3 |
|
frlmlss.u |
⊢ 𝑈 = ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
| 4 |
1
|
frlmval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 = ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 5 |
4
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ 𝐹 ) = ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ) |
| 6 |
2 5
|
eqtrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐵 = ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ) |
| 7 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐼 ∈ 𝑊 ) |
| 8 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ Ring ) |
| 9 |
|
rlmlmod |
⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 11 |
|
fconst6g |
⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LMod → ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) : 𝐼 ⟶ LMod ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) : 𝐼 ⟶ LMod ) |
| 13 |
|
fvex |
⊢ ( ringLMod ‘ 𝑅 ) ∈ V |
| 14 |
13
|
fvconst2 |
⊢ ( 𝑖 ∈ 𝐼 → ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑖 ) = ( ringLMod ‘ 𝑅 ) ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑖 ) = ( ringLMod ‘ 𝑅 ) ) |
| 16 |
15
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑖 ∈ 𝐼 ) → ( Scalar ‘ ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑖 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 17 |
|
rlmsca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑖 ∈ 𝐼 ) → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 19 |
16 18
|
eqtr4d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑖 ∈ 𝐼 ) → ( Scalar ‘ ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑖 ) ) = 𝑅 ) |
| 20 |
|
eqid |
⊢ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) |
| 21 |
|
eqid |
⊢ ( LSubSp ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) = ( LSubSp ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 22 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) = ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 23 |
7 8 12 19 20 21 22
|
dsmmlss |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ ( LSubSp ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ) |
| 24 |
|
eqid |
⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) |
| 25 |
|
eqid |
⊢ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |
| 26 |
24 25
|
pwsval |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ V ∧ 𝐼 ∈ 𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 27 |
13 26
|
mpan |
⊢ ( 𝐼 ∈ 𝑊 → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 29 |
17
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = 𝑅 ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = 𝑅 ) |
| 31 |
30
|
oveq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 32 |
28 31
|
eqtr2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
| 33 |
32
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( LSubSp ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) = ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 34 |
33 3
|
eqtr4di |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( LSubSp ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) = 𝑈 ) |
| 35 |
23 34
|
eleqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ 𝑈 ) |
| 36 |
6 35
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐵 ∈ 𝑈 ) |