Step |
Hyp |
Ref |
Expression |
1 |
|
frlmlvec.1 |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
2 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
3 |
1
|
frlmlmod |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ LMod ) |
4 |
2 3
|
sylan |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ LMod ) |
5 |
1
|
frlmsca |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
6 |
|
simpl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ DivRing ) |
7 |
5 6
|
eqeltrrd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ 𝐹 ) ∈ DivRing ) |
8 |
|
eqid |
⊢ ( Scalar ‘ 𝐹 ) = ( Scalar ‘ 𝐹 ) |
9 |
8
|
islvec |
⊢ ( 𝐹 ∈ LVec ↔ ( 𝐹 ∈ LMod ∧ ( Scalar ‘ 𝐹 ) ∈ DivRing ) ) |
10 |
4 7 9
|
sylanbrc |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ LVec ) |