| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmphl.y |
⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) |
| 2 |
|
frlmphl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
frlmphl.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
frlmphl.v |
⊢ 𝑉 = ( Base ‘ 𝑌 ) |
| 5 |
|
frlmphl.j |
⊢ , = ( ·𝑖 ‘ 𝑌 ) |
| 6 |
|
frlmphl.o |
⊢ 𝑂 = ( 0g ‘ 𝑌 ) |
| 7 |
|
frlmphl.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 8 |
|
frlmphl.s |
⊢ ∗ = ( *𝑟 ‘ 𝑅 ) |
| 9 |
|
frlmphl.f |
⊢ ( 𝜑 → 𝑅 ∈ Field ) |
| 10 |
|
frlmphl.m |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ( 𝑔 , 𝑔 ) = 0 ) → 𝑔 = 𝑂 ) |
| 11 |
|
frlmphl.u |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∗ ‘ 𝑥 ) = 𝑥 ) |
| 12 |
|
frlmphl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 13 |
4
|
a1i |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑌 ) ) |
| 14 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) ) |
| 15 |
|
eqidd |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) ) |
| 16 |
5
|
a1i |
⊢ ( 𝜑 → , = ( ·𝑖 ‘ 𝑌 ) ) |
| 17 |
6
|
a1i |
⊢ ( 𝜑 → 𝑂 = ( 0g ‘ 𝑌 ) ) |
| 18 |
|
isfld |
⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) |
| 19 |
9 18
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) |
| 20 |
19
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| 21 |
1
|
frlmsca |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ 𝑌 ) ) |
| 22 |
20 12 21
|
syl2anc |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑌 ) ) |
| 23 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 24 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) ) |
| 25 |
3
|
a1i |
⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) |
| 26 |
8
|
a1i |
⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝑅 ) ) |
| 27 |
7
|
a1i |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) |
| 28 |
20
|
drngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 29 |
1
|
frlmlmod |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑌 ∈ LMod ) |
| 30 |
28 12 29
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ LMod ) |
| 31 |
22 20
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑌 ) ∈ DivRing ) |
| 32 |
|
eqid |
⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) |
| 33 |
32
|
islvec |
⊢ ( 𝑌 ∈ LVec ↔ ( 𝑌 ∈ LMod ∧ ( Scalar ‘ 𝑌 ) ∈ DivRing ) ) |
| 34 |
30 31 33
|
sylanbrc |
⊢ ( 𝜑 → 𝑌 ∈ LVec ) |
| 35 |
9
|
fldcrngd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 36 |
2 8 35 11
|
idsrngd |
⊢ ( 𝜑 → 𝑅 ∈ *-Ring ) |
| 37 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝐼 ∈ 𝑊 ) |
| 38 |
28
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑅 ∈ Ring ) |
| 39 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑔 ∈ 𝑉 ) |
| 40 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ℎ ∈ 𝑉 ) |
| 41 |
1 2 3 4 5
|
frlmipval |
⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ) → ( 𝑔 , ℎ ) = ( 𝑅 Σg ( 𝑔 ∘f · ℎ ) ) ) |
| 42 |
37 38 39 40 41
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑔 , ℎ ) = ( 𝑅 Σg ( 𝑔 ∘f · ℎ ) ) ) |
| 43 |
1 2 4
|
frlmbasmap |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑔 ∈ 𝑉 ) → 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 44 |
37 39 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 45 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑔 : 𝐼 ⟶ 𝐵 ) |
| 46 |
44 45
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑔 : 𝐼 ⟶ 𝐵 ) |
| 47 |
46
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑔 Fn 𝐼 ) |
| 48 |
1 2 4
|
frlmbasmap |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ ℎ ∈ 𝑉 ) → ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 49 |
37 40 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 50 |
|
elmapi |
⊢ ( ℎ ∈ ( 𝐵 ↑m 𝐼 ) → ℎ : 𝐼 ⟶ 𝐵 ) |
| 51 |
49 50
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ℎ : 𝐼 ⟶ 𝐵 ) |
| 52 |
51
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ℎ Fn 𝐼 ) |
| 53 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
| 54 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 55 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) |
| 56 |
47 52 37 37 53 54 55
|
offval |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑔 ∘f · ℎ ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) |
| 57 |
56
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑅 Σg ( 𝑔 ∘f · ℎ ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) |
| 58 |
42 57
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑔 , ℎ ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) |
| 59 |
28
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 60 |
59
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑅 ∈ CMnd ) |
| 61 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 62 |
46
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) |
| 63 |
51
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ ‘ 𝑥 ) ∈ 𝐵 ) |
| 64 |
2 3 61 62 63
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 65 |
64
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) : 𝐼 ⟶ 𝐵 ) |
| 66 |
1 2 3 4 5 6 7 8 9 10 11 12
|
frlmphllem |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) finSupp 0 ) |
| 67 |
2 7 60 37 65 66
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ∈ 𝐵 ) |
| 68 |
58 67
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑔 , ℎ ) ∈ 𝐵 ) |
| 69 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 70 |
59
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑅 ∈ CMnd ) |
| 71 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝐼 ∈ 𝑊 ) |
| 72 |
28
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑅 ∈ Ring ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 74 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑘 ∈ 𝐵 ) |
| 75 |
74
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑘 ∈ 𝐵 ) |
| 76 |
|
simp31 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑔 ∈ 𝑉 ) |
| 77 |
71 76 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 78 |
77 45
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑔 : 𝐼 ⟶ 𝐵 ) |
| 79 |
78
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) |
| 80 |
|
simp33 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑖 ∈ 𝑉 ) |
| 81 |
1 2 4
|
frlmbasmap |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑖 ∈ 𝑉 ) → 𝑖 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 82 |
71 80 81
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑖 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 83 |
|
elmapi |
⊢ ( 𝑖 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑖 : 𝐼 ⟶ 𝐵 ) |
| 84 |
82 83
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑖 : 𝐼 ⟶ 𝐵 ) |
| 85 |
84
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑖 ‘ 𝑥 ) ∈ 𝐵 ) |
| 86 |
2 3 73 79 85
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 87 |
2 3 73 75 86
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ∈ 𝐵 ) |
| 88 |
|
simp32 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ℎ ∈ 𝑉 ) |
| 89 |
71 88 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 90 |
89 50
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ℎ : 𝐼 ⟶ 𝐵 ) |
| 91 |
90
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ ‘ 𝑥 ) ∈ 𝐵 ) |
| 92 |
2 3 73 91 85
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 93 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 94 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 95 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑦 ) ) |
| 96 |
95
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) = ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) |
| 97 |
96
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) |
| 98 |
97
|
oveq1i |
⊢ ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) = ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) ∘f · 𝑖 ) |
| 99 |
2 3 73 75 79
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 100 |
99
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) : 𝐼 ⟶ 𝐵 ) |
| 101 |
100
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) Fn 𝐼 ) |
| 102 |
97
|
fneq1i |
⊢ ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) Fn 𝐼 ↔ ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) Fn 𝐼 ) |
| 103 |
101 102
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) Fn 𝐼 ) |
| 104 |
84
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑖 Fn 𝐼 ) |
| 105 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) ) |
| 106 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) |
| 107 |
106
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 = 𝑥 ) → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 108 |
107
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 = 𝑥 ) → ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) = ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) |
| 109 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
| 110 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ∈ V ) |
| 111 |
105 108 109 110
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) ‘ 𝑥 ) = ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) |
| 112 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑖 ‘ 𝑥 ) = ( 𝑖 ‘ 𝑥 ) ) |
| 113 |
103 104 71 71 53 111 112
|
offval |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) ∘f · 𝑖 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 114 |
2 3
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑘 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑖 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) = ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 115 |
73 75 79 85 114
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) = ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 116 |
115
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 117 |
113 116
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) ∘f · 𝑖 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 118 |
98 117
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 119 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) ∈ V ) |
| 120 |
101 104 71 71
|
offun |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → Fun ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) ) |
| 121 |
|
simp3 |
⊢ ( ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) → 𝑖 ∈ 𝑉 ) |
| 122 |
12 121
|
anim12i |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝐼 ∈ 𝑊 ∧ 𝑖 ∈ 𝑉 ) ) |
| 123 |
122
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝐼 ∈ 𝑊 ∧ 𝑖 ∈ 𝑉 ) ) |
| 124 |
1 7 4
|
frlmbasfsupp |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑖 ∈ 𝑉 ) → 𝑖 finSupp 0 ) |
| 125 |
123 124
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑖 finSupp 0 ) |
| 126 |
2 7
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 127 |
72 126
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 0 ∈ 𝐵 ) |
| 128 |
2 3 7
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 · 0 ) = 0 ) |
| 129 |
72 128
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 · 0 ) = 0 ) |
| 130 |
71 127 100 84 129
|
suppofss2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) supp 0 ) ⊆ ( 𝑖 supp 0 ) ) |
| 131 |
|
fsuppsssupp |
⊢ ( ( ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) ∈ V ∧ Fun ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) ) ∧ ( 𝑖 finSupp 0 ∧ ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) supp 0 ) ⊆ ( 𝑖 supp 0 ) ) ) → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) finSupp 0 ) |
| 132 |
119 120 125 130 131
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) finSupp 0 ) |
| 133 |
118 132
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) finSupp 0 ) |
| 134 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝜑 ) |
| 135 |
|
eleq1w |
⊢ ( 𝑔 = ℎ → ( 𝑔 ∈ 𝑉 ↔ ℎ ∈ 𝑉 ) ) |
| 136 |
|
id |
⊢ ( 𝑔 = ℎ → 𝑔 = ℎ ) |
| 137 |
136 136
|
oveq12d |
⊢ ( 𝑔 = ℎ → ( 𝑔 , 𝑔 ) = ( ℎ , ℎ ) ) |
| 138 |
137
|
eqeq1d |
⊢ ( 𝑔 = ℎ → ( ( 𝑔 , 𝑔 ) = 0 ↔ ( ℎ , ℎ ) = 0 ) ) |
| 139 |
135 138
|
3anbi23d |
⊢ ( 𝑔 = ℎ → ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ( 𝑔 , 𝑔 ) = 0 ) ↔ ( 𝜑 ∧ ℎ ∈ 𝑉 ∧ ( ℎ , ℎ ) = 0 ) ) ) |
| 140 |
|
eqeq1 |
⊢ ( 𝑔 = ℎ → ( 𝑔 = 𝑂 ↔ ℎ = 𝑂 ) ) |
| 141 |
139 140
|
imbi12d |
⊢ ( 𝑔 = ℎ → ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ( 𝑔 , 𝑔 ) = 0 ) → 𝑔 = 𝑂 ) ↔ ( ( 𝜑 ∧ ℎ ∈ 𝑉 ∧ ( ℎ , ℎ ) = 0 ) → ℎ = 𝑂 ) ) ) |
| 142 |
141 10
|
chvarvv |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑉 ∧ ( ℎ , ℎ ) = 0 ) → ℎ = 𝑂 ) |
| 143 |
1 2 3 4 5 6 7 8 9 142 11 12
|
frlmphllem |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) finSupp 0 ) |
| 144 |
134 88 80 143
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) finSupp 0 ) |
| 145 |
2 7 69 70 71 87 92 93 94 133 144
|
gsummptfsadd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ) |
| 146 |
1 2 3
|
frlmip |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ DivRing ) → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) , ℎ ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) = ( ·𝑖 ‘ 𝑌 ) ) |
| 147 |
12 20 146
|
syl2anc |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) , ℎ ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) = ( ·𝑖 ‘ 𝑌 ) ) |
| 148 |
5 147
|
eqtr4id |
⊢ ( 𝜑 → , = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) , ℎ ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) ) |
| 149 |
|
fveq1 |
⊢ ( 𝑒 = 𝑔 → ( 𝑒 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 150 |
149
|
oveq1d |
⊢ ( 𝑒 = 𝑔 → ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = ( ( 𝑔 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 151 |
150
|
mpteq2dv |
⊢ ( 𝑒 = 𝑔 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 152 |
151
|
oveq2d |
⊢ ( 𝑒 = 𝑔 → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) ) |
| 153 |
|
fveq1 |
⊢ ( 𝑓 = ℎ → ( 𝑓 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) |
| 154 |
153
|
oveq2d |
⊢ ( 𝑓 = ℎ → ( ( 𝑔 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) |
| 155 |
154
|
mpteq2dv |
⊢ ( 𝑓 = ℎ → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) |
| 156 |
155
|
oveq2d |
⊢ ( 𝑓 = ℎ → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) |
| 157 |
152 156
|
cbvmpov |
⊢ ( 𝑒 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) ) = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) , ℎ ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) |
| 158 |
148 157
|
eqtr4di |
⊢ ( 𝜑 → , = ( 𝑒 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) |
| 159 |
158
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → , = ( 𝑒 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) |
| 160 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∧ 𝑓 = 𝑖 ) ) → 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ) |
| 161 |
160
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∧ 𝑓 = 𝑖 ) ) → ( 𝑒 ‘ 𝑥 ) = ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) ) |
| 162 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∧ 𝑓 = 𝑖 ) ) → 𝑓 = 𝑖 ) |
| 163 |
162
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∧ 𝑓 = 𝑖 ) ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑖 ‘ 𝑥 ) ) |
| 164 |
161 163
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∧ 𝑓 = 𝑖 ) ) → ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) |
| 165 |
164
|
mpteq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∧ 𝑓 = 𝑖 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 166 |
165
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∧ 𝑓 = 𝑖 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 167 |
30
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑌 ∈ LMod ) |
| 168 |
22
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑅 = ( Scalar ‘ 𝑌 ) ) |
| 169 |
168
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 170 |
2 169
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 171 |
74 170
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 172 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) |
| 173 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) |
| 174 |
4 32 172 173
|
lmodvscl |
⊢ ( ( 𝑌 ∈ LMod ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑔 ∈ 𝑉 ) → ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∈ 𝑉 ) |
| 175 |
167 171 76 174
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∈ 𝑉 ) |
| 176 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
| 177 |
4 176
|
lmodvacl |
⊢ ( ( 𝑌 ∈ LMod ∧ ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∈ 𝑉 ) |
| 178 |
167 175 88 177
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∈ 𝑉 ) |
| 179 |
1 2 4
|
frlmbasmap |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∈ 𝑉 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 180 |
71 178 179
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 181 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ∈ V ) |
| 182 |
159 166 180 82 181
|
ovmpod |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) , 𝑖 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 183 |
1 4 72 71 175 88 69 176
|
frlmplusgval |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∘f ( +g ‘ 𝑅 ) ℎ ) ) |
| 184 |
1 2 4
|
frlmbasmap |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∈ 𝑉 ) → ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 185 |
71 175 184
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 186 |
|
elmapi |
⊢ ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∈ ( 𝐵 ↑m 𝐼 ) → ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) : 𝐼 ⟶ 𝐵 ) |
| 187 |
|
ffn |
⊢ ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) : 𝐼 ⟶ 𝐵 → ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) Fn 𝐼 ) |
| 188 |
185 186 187
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) Fn 𝐼 ) |
| 189 |
90
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ℎ Fn 𝐼 ) |
| 190 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 191 |
76
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑔 ∈ 𝑉 ) |
| 192 |
1 4 2 190 75 191 109 172 3
|
frlmvscaval |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ‘ 𝑥 ) = ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) |
| 193 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) |
| 194 |
188 189 71 71 53 192 193
|
offval |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∘f ( +g ‘ 𝑅 ) ℎ ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ℎ ‘ 𝑥 ) ) ) ) |
| 195 |
183 194
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ℎ ‘ 𝑥 ) ) ) ) |
| 196 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ℎ ‘ 𝑥 ) ) ∈ V ) |
| 197 |
195 196
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) = ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ℎ ‘ 𝑥 ) ) ) |
| 198 |
197
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) = ( ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ℎ ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) ) |
| 199 |
2 69 3
|
ringdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ∈ 𝐵 ∧ ( ℎ ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑖 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ℎ ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) = ( ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 200 |
73 99 91 85 199
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ℎ ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) = ( ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 201 |
115
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) = ( ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 202 |
198 200 201
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) = ( ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 203 |
202
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 204 |
203
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ) |
| 205 |
182 204
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) , 𝑖 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ) |
| 206 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = 𝑔 ∧ 𝑓 = 𝑖 ) ) → 𝑒 = 𝑔 ) |
| 207 |
206
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = 𝑔 ∧ 𝑓 = 𝑖 ) ) → ( 𝑒 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 208 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = 𝑔 ∧ 𝑓 = 𝑖 ) ) → 𝑓 = 𝑖 ) |
| 209 |
208
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = 𝑔 ∧ 𝑓 = 𝑖 ) ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑖 ‘ 𝑥 ) ) |
| 210 |
207 209
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = 𝑔 ∧ 𝑓 = 𝑖 ) ) → ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) |
| 211 |
210
|
mpteq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = 𝑔 ∧ 𝑓 = 𝑖 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 212 |
211
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = 𝑔 ∧ 𝑓 = 𝑖 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 213 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ∈ V ) |
| 214 |
159 212 77 82 213
|
ovmpod |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑔 , 𝑖 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 215 |
214
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑘 · ( 𝑔 , 𝑖 ) ) = ( 𝑘 · ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ) |
| 216 |
1 2 3 4 5 6 7 8 9 10 11 12
|
frlmphllem |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) finSupp 0 ) |
| 217 |
134 76 80 216
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) finSupp 0 ) |
| 218 |
2 7 3 72 71 74 86 217
|
gsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) = ( 𝑘 · ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ) |
| 219 |
215 218
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑘 · ( 𝑔 , 𝑖 ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ) |
| 220 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑖 ) ) → 𝑒 = ℎ ) |
| 221 |
220
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑖 ) ) → ( 𝑒 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) |
| 222 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑖 ) ) → 𝑓 = 𝑖 ) |
| 223 |
222
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑖 ) ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑖 ‘ 𝑥 ) ) |
| 224 |
221 223
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑖 ) ) → ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) |
| 225 |
224
|
mpteq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑖 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 226 |
225
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑖 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 227 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ∈ V ) |
| 228 |
159 226 89 82 227
|
ovmpod |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ℎ , 𝑖 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 229 |
219 228
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑘 · ( 𝑔 , 𝑖 ) ) ( +g ‘ 𝑅 ) ( ℎ , 𝑖 ) ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ) |
| 230 |
145 205 229
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) , 𝑖 ) = ( ( 𝑘 · ( 𝑔 , 𝑖 ) ) ( +g ‘ 𝑅 ) ( ℎ , 𝑖 ) ) ) |
| 231 |
35
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑅 ∈ CRing ) |
| 232 |
231
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ CRing ) |
| 233 |
2 3
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ ( ℎ ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) → ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) |
| 234 |
232 63 62 233
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) |
| 235 |
234
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) |
| 236 |
235
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) |
| 237 |
158
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → , = ( 𝑒 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) |
| 238 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑔 ) ) → 𝑒 = ℎ ) |
| 239 |
238
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑔 ) ) → ( 𝑒 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) |
| 240 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑔 ) ) → 𝑓 = 𝑔 ) |
| 241 |
240
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑔 ) ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 242 |
239 241
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑔 ) ) → ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) |
| 243 |
242
|
mpteq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 244 |
243
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑔 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 245 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ∈ V ) |
| 246 |
237 244 49 44 245
|
ovmpod |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ℎ , 𝑔 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 247 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑔 , ℎ ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ ( 𝑔 , ℎ ) ) ) |
| 248 |
|
id |
⊢ ( 𝑥 = ( 𝑔 , ℎ ) → 𝑥 = ( 𝑔 , ℎ ) ) |
| 249 |
247 248
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑔 , ℎ ) → ( ( ∗ ‘ 𝑥 ) = 𝑥 ↔ ( ∗ ‘ ( 𝑔 , ℎ ) ) = ( 𝑔 , ℎ ) ) ) |
| 250 |
11
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 ) |
| 251 |
250
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 ) |
| 252 |
249 251 68
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ∗ ‘ ( 𝑔 , ℎ ) ) = ( 𝑔 , ℎ ) ) |
| 253 |
252 58
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ∗ ‘ ( 𝑔 , ℎ ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) |
| 254 |
236 246 253
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ∗ ‘ ( 𝑔 , ℎ ) ) = ( ℎ , 𝑔 ) ) |
| 255 |
13 14 15 16 17 22 23 24 25 26 27 34 36 68 230 10 254
|
isphld |
⊢ ( 𝜑 → 𝑌 ∈ PreHil ) |