Step |
Hyp |
Ref |
Expression |
1 |
|
frlmplusgval.y |
⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) |
2 |
|
frlmplusgval.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
3 |
|
frlmplusgval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
4 |
|
frlmplusgval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
5 |
|
frlmplusgval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
6 |
|
frlmplusgval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
7 |
|
frlmplusgval.a |
⊢ + = ( +g ‘ 𝑅 ) |
8 |
|
frlmplusgval.p |
⊢ ✚ = ( +g ‘ 𝑌 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
10 |
1 9
|
frlmpws |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑌 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝑌 ) ) ) |
11 |
3 4 10
|
syl2anc |
⊢ ( 𝜑 → 𝑌 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝑌 ) ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝑌 ) ) ) ) |
13 |
|
fvex |
⊢ ( Base ‘ 𝑌 ) ∈ V |
14 |
|
eqid |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝑌 ) ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝑌 ) ) |
15 |
|
eqid |
⊢ ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
16 |
14 15
|
ressplusg |
⊢ ( ( Base ‘ 𝑌 ) ∈ V → ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( +g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝑌 ) ) ) ) |
17 |
13 16
|
ax-mp |
⊢ ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( +g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝑌 ) ) ) |
18 |
12 8 17
|
3eqtr4g |
⊢ ( 𝜑 → ✚ = ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
19 |
18
|
oveqd |
⊢ ( 𝜑 → ( 𝐹 ✚ 𝐺 ) = ( 𝐹 ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) 𝐺 ) ) |
20 |
|
eqid |
⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) |
21 |
|
eqid |
⊢ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
22 |
|
fvexd |
⊢ ( 𝜑 → ( ringLMod ‘ 𝑅 ) ∈ V ) |
23 |
1 2
|
frlmpws |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑌 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) |
24 |
3 4 23
|
syl2anc |
⊢ ( 𝜑 → 𝑌 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ) |
26 |
2 25
|
eqtrid |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ) |
27 |
|
eqid |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) |
28 |
27 21
|
ressbasss |
⊢ ( Base ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ⊆ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
29 |
26 28
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
30 |
29 5
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
31 |
29 6
|
sseldd |
⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
32 |
|
rlmplusg |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) |
33 |
7 32
|
eqtri |
⊢ + = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) |
34 |
20 21 22 4 30 31 33 15
|
pwsplusgval |
⊢ ( 𝜑 → ( 𝐹 ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) 𝐺 ) = ( 𝐹 ∘f + 𝐺 ) ) |
35 |
19 34
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ✚ 𝐺 ) = ( 𝐹 ∘f + 𝐺 ) ) |