| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frlmval.f | ⊢ 𝐹  =  ( 𝑅  freeLMod  𝐼 ) | 
						
							| 2 |  | fvex | ⊢ ( ringLMod ‘ 𝑅 )  ∈  V | 
						
							| 3 |  | fnconstg | ⊢ ( ( ringLMod ‘ 𝑅 )  ∈  V  →  ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } )  Fn  𝐼 ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } )  Fn  𝐼 | 
						
							| 5 |  | dsmmfi | ⊢ ( ( ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } )  Fn  𝐼  ∧  𝐼  ∈  Fin )  →  ( 𝑅  ⊕m  ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } ) )  =  ( 𝑅 Xs ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } ) ) ) | 
						
							| 6 | 4 5 | mpan | ⊢ ( 𝐼  ∈  Fin  →  ( 𝑅  ⊕m  ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } ) )  =  ( 𝑅 Xs ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  Fin )  →  ( 𝑅  ⊕m  ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } ) )  =  ( 𝑅 Xs ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } ) ) ) | 
						
							| 8 |  | rlmsca | ⊢ ( 𝑅  ∈  𝑉  →  𝑅  =  ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  Fin )  →  𝑅  =  ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  Fin )  →  ( 𝑅 Xs ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } ) )  =  ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } ) ) ) | 
						
							| 11 | 7 10 | eqtrd | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  Fin )  →  ( 𝑅  ⊕m  ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } ) )  =  ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } ) ) ) | 
						
							| 12 | 1 | frlmval | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  Fin )  →  𝐹  =  ( 𝑅  ⊕m  ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( ( ringLMod ‘ 𝑅 )  ↑s  𝐼 )  =  ( ( ringLMod ‘ 𝑅 )  ↑s  𝐼 ) | 
						
							| 14 |  | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) )  =  ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 15 | 13 14 | pwsval | ⊢ ( ( ( ringLMod ‘ 𝑅 )  ∈  V  ∧  𝐼  ∈  Fin )  →  ( ( ringLMod ‘ 𝑅 )  ↑s  𝐼 )  =  ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } ) ) ) | 
						
							| 16 | 2 15 | mpan | ⊢ ( 𝐼  ∈  Fin  →  ( ( ringLMod ‘ 𝑅 )  ↑s  𝐼 )  =  ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  Fin )  →  ( ( ringLMod ‘ 𝑅 )  ↑s  𝐼 )  =  ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼  ×  { ( ringLMod ‘ 𝑅 ) } ) ) ) | 
						
							| 18 | 11 12 17 | 3eqtr4d | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  Fin )  →  𝐹  =  ( ( ringLMod ‘ 𝑅 )  ↑s  𝐼 ) ) |