Metamath Proof Explorer


Theorem frlmrcl

Description: If a free module is inhabited, this is sufficient to conclude that the ring expression defines a set. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses frlmval.f 𝐹 = ( 𝑅 freeLMod 𝐼 )
frlmrcl.b 𝐵 = ( Base ‘ 𝐹 )
Assertion frlmrcl ( 𝑋𝐵𝑅 ∈ V )

Proof

Step Hyp Ref Expression
1 frlmval.f 𝐹 = ( 𝑅 freeLMod 𝐼 )
2 frlmrcl.b 𝐵 = ( Base ‘ 𝐹 )
3 df-frlm freeLMod = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( 𝑟m ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) ) )
4 3 reldmmpo Rel dom freeLMod
5 1 2 4 strov2rcl ( 𝑋𝐵𝑅 ∈ V )