Database
BASIC LINEAR ALGEBRA
Vectors and free modules
Free modules
frlmrcl
Metamath Proof Explorer
Description: If a free module is inhabited, this is sufficient to conclude that the
ring expression defines a set. (Contributed by Stefan O'Rear , 3-Feb-2015)
Ref
Expression
Hypotheses
frlmval.f
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 )
frlmrcl.b
⊢ 𝐵 = ( Base ‘ 𝐹 )
Assertion
frlmrcl
⊢ ( 𝑋 ∈ 𝐵 → 𝑅 ∈ V )
Proof
Step
Hyp
Ref
Expression
1
frlmval.f
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 )
2
frlmrcl.b
⊢ 𝐵 = ( Base ‘ 𝐹 )
3
df-frlm
⊢ freeLMod = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( 𝑟 ⊕m ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) ) )
4
3
reldmmpo
⊢ Rel dom freeLMod
5
1 2 4
strov2rcl
⊢ ( 𝑋 ∈ 𝐵 → 𝑅 ∈ V )