Step |
Hyp |
Ref |
Expression |
1 |
|
frlmval.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
2 |
|
fvex |
⊢ ( ringLMod ‘ 𝑅 ) ∈ V |
3 |
|
eqid |
⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) |
4 |
|
eqid |
⊢ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |
5 |
3 4
|
pwssca |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ V ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
6 |
2 5
|
mpan |
⊢ ( 𝐼 ∈ 𝑊 → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
8 |
|
fvex |
⊢ ( Base ‘ 𝐹 ) ∈ V |
9 |
|
eqid |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) |
10 |
|
eqid |
⊢ ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
11 |
9 10
|
resssca |
⊢ ( ( Base ‘ 𝐹 ) ∈ V → ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Scalar ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) ) |
12 |
8 11
|
ax-mp |
⊢ ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Scalar ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) |
13 |
7 12
|
eqtrdi |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) ) |
14 |
|
rlmsca |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
17 |
1 16
|
frlmpws |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ 𝐹 ) = ( Scalar ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) ) |
19 |
13 15 18
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ 𝐹 ) ) |