| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmval.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
| 2 |
|
fvex |
⊢ ( ringLMod ‘ 𝑅 ) ∈ V |
| 3 |
|
eqid |
⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) |
| 4 |
|
eqid |
⊢ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |
| 5 |
3 4
|
pwssca |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ V ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 6 |
2 5
|
mpan |
⊢ ( 𝐼 ∈ 𝑊 → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 8 |
|
fvex |
⊢ ( Base ‘ 𝐹 ) ∈ V |
| 9 |
|
eqid |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) |
| 10 |
|
eqid |
⊢ ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
| 11 |
9 10
|
resssca |
⊢ ( ( Base ‘ 𝐹 ) ∈ V → ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Scalar ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 12 |
8 11
|
ax-mp |
⊢ ( Scalar ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Scalar ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) |
| 13 |
7 12
|
eqtrdi |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 14 |
|
rlmsca |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 17 |
1 16
|
frlmpws |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) |
| 18 |
17
|
fveq2d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ 𝐹 ) = ( Scalar ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 19 |
13 15 18
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ 𝐹 ) ) |