Step |
Hyp |
Ref |
Expression |
1 |
|
frlmsslss.y |
⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) |
2 |
|
frlmsslss.u |
⊢ 𝑈 = ( LSubSp ‘ 𝑌 ) |
3 |
|
frlmsslss.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
4 |
|
frlmsslss.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
frlmsslss2.c |
⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 supp 0 ) ⊆ 𝐽 } |
6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
7 |
1 6 3
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
8 |
7
|
3ad2antl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
9 |
8
|
ffnd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 Fn 𝐼 ) |
10 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐽 ⊆ 𝐼 ) |
11 |
|
undif |
⊢ ( 𝐽 ⊆ 𝐼 ↔ ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) = 𝐼 ) |
12 |
10 11
|
sylib |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) = 𝐼 ) |
13 |
12
|
fneq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 Fn ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) ↔ 𝑥 Fn 𝐼 ) ) |
14 |
9 13
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 Fn ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) ) |
15 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
16 |
4
|
fvexi |
⊢ 0 ∈ V |
17 |
16
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → 0 ∈ V ) |
18 |
|
disjdif |
⊢ ( 𝐽 ∩ ( 𝐼 ∖ 𝐽 ) ) = ∅ |
19 |
18
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐽 ∩ ( 𝐼 ∖ 𝐽 ) ) = ∅ ) |
20 |
|
fnsuppres |
⊢ ( ( 𝑥 Fn ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 0 ∈ V ) ∧ ( 𝐽 ∩ ( 𝐼 ∖ 𝐽 ) ) = ∅ ) → ( ( 𝑥 supp 0 ) ⊆ 𝐽 ↔ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) ) ) |
21 |
14 15 17 19 20
|
syl121anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 supp 0 ) ⊆ 𝐽 ↔ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) ) ) |
22 |
21
|
rabbidva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑥 supp 0 ) ⊆ 𝐽 } = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) } ) |
23 |
5 22
|
eqtrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐶 = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) } ) |
24 |
|
difssd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ( 𝐼 ∖ 𝐽 ) ⊆ 𝐼 ) |
25 |
|
eqid |
⊢ { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) } = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) } |
26 |
1 2 3 4 25
|
frlmsslss |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ ( 𝐼 ∖ 𝐽 ) ⊆ 𝐼 ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) } ∈ 𝑈 ) |
27 |
24 26
|
syld3an3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) } ∈ 𝑈 ) |
28 |
23 27
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐶 ∈ 𝑈 ) |