Step |
Hyp |
Ref |
Expression |
1 |
|
frlmssuvc1.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
2 |
|
frlmssuvc1.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
3 |
|
frlmssuvc1.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
4 |
|
frlmssuvc1.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
|
frlmssuvc1.t |
⊢ · = ( ·𝑠 ‘ 𝐹 ) |
6 |
|
frlmssuvc1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
7 |
|
frlmssuvc1.c |
⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 supp 0 ) ⊆ 𝐽 } |
8 |
|
frlmssuvc1.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
9 |
|
frlmssuvc1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
10 |
|
frlmssuvc1.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
11 |
|
frlmssuvc2.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐼 ∖ 𝐽 ) ) |
12 |
|
frlmssuvc2.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐾 ∖ { 0 } ) ) |
13 |
|
fveq2 |
⊢ ( 𝑥 = 𝐿 → ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) = ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝐿 ) ) |
14 |
13
|
neeq1d |
⊢ ( 𝑥 = 𝐿 → ( ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 ↔ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝐿 ) ≠ 0 ) ) |
15 |
11
|
eldifad |
⊢ ( 𝜑 → 𝐿 ∈ 𝐼 ) |
16 |
12
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
17 |
2 1 3
|
uvcff |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑈 : 𝐼 ⟶ 𝐵 ) |
18 |
8 9 17
|
syl2anc |
⊢ ( 𝜑 → 𝑈 : 𝐼 ⟶ 𝐵 ) |
19 |
18 15
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝐿 ) ∈ 𝐵 ) |
20 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
21 |
1 3 4 9 16 19 15 5 20
|
frlmvscaval |
⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝐿 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝐿 ) ‘ 𝐿 ) ) ) |
22 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
23 |
2 8 9 15 22
|
uvcvv1 |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝐿 ) ‘ 𝐿 ) = ( 1r ‘ 𝑅 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝐿 ) ‘ 𝐿 ) ) = ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
25 |
4 20 22
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
26 |
8 16 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
27 |
21 24 26
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝐿 ) = 𝑋 ) |
28 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝐾 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
29 |
12 28
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
30 |
27 29
|
eqnetrd |
⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝐿 ) ≠ 0 ) |
31 |
14 15 30
|
elrabd |
⊢ ( 𝜑 → 𝐿 ∈ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 } ) |
32 |
11
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝐿 ∈ 𝐽 ) |
33 |
|
nelss |
⊢ ( ( 𝐿 ∈ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 } ∧ ¬ 𝐿 ∈ 𝐽 ) → ¬ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 } ⊆ 𝐽 ) |
34 |
31 32 33
|
syl2anc |
⊢ ( 𝜑 → ¬ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 } ⊆ 𝐽 ) |
35 |
1
|
frlmlmod |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝐹 ∈ LMod ) |
36 |
8 9 35
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ LMod ) |
37 |
1
|
frlmsca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
38 |
8 9 37
|
syl2anc |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
39 |
38
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
40 |
4 39
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
41 |
16 40
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
42 |
|
eqid |
⊢ ( Scalar ‘ 𝐹 ) = ( Scalar ‘ 𝐹 ) |
43 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐹 ) ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) |
44 |
3 42 5 43
|
lmodvscl |
⊢ ( ( 𝐹 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ ( 𝑈 ‘ 𝐿 ) ∈ 𝐵 ) → ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐵 ) |
45 |
36 41 19 44
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐵 ) |
46 |
1 4 3
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐵 ) → ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) : 𝐼 ⟶ 𝐾 ) |
47 |
9 45 46
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) : 𝐼 ⟶ 𝐾 ) |
48 |
47
|
ffnd |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) Fn 𝐼 ) |
49 |
6
|
fvexi |
⊢ 0 ∈ V |
50 |
49
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
51 |
|
suppvalfn |
⊢ ( ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) → ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 } ) |
52 |
48 9 50 51
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 } ) |
53 |
52
|
sseq1d |
⊢ ( 𝜑 → ( ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) ⊆ 𝐽 ↔ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 } ⊆ 𝐽 ) ) |
54 |
34 53
|
mtbird |
⊢ ( 𝜑 → ¬ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) ⊆ 𝐽 ) |
55 |
54
|
intnand |
⊢ ( 𝜑 → ¬ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐵 ∧ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) ⊆ 𝐽 ) ) |
56 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) → ( 𝑥 supp 0 ) = ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) ) |
57 |
56
|
sseq1d |
⊢ ( 𝑥 = ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) → ( ( 𝑥 supp 0 ) ⊆ 𝐽 ↔ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) ⊆ 𝐽 ) ) |
58 |
57 7
|
elrab2 |
⊢ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐶 ↔ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐵 ∧ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) ⊆ 𝐽 ) ) |
59 |
55 58
|
sylnibr |
⊢ ( 𝜑 → ¬ ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐶 ) |