Step |
Hyp |
Ref |
Expression |
1 |
|
frlmup.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
2 |
|
frlmup.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
|
frlmup.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
4 |
|
frlmup.v |
⊢ · = ( ·𝑠 ‘ 𝑇 ) |
5 |
|
frlmup.e |
⊢ 𝐸 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑇 Σg ( 𝑥 ∘f · 𝐴 ) ) ) |
6 |
|
frlmup.t |
⊢ ( 𝜑 → 𝑇 ∈ LMod ) |
7 |
|
frlmup.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) |
8 |
|
frlmup.r |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑇 ) ) |
9 |
|
frlmup.a |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐶 ) |
10 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐹 ) = ( ·𝑠 ‘ 𝐹 ) |
11 |
|
eqid |
⊢ ( Scalar ‘ 𝐹 ) = ( Scalar ‘ 𝐹 ) |
12 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
13 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐹 ) ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) |
14 |
12
|
lmodring |
⊢ ( 𝑇 ∈ LMod → ( Scalar ‘ 𝑇 ) ∈ Ring ) |
15 |
6 14
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝑇 ) ∈ Ring ) |
16 |
8 15
|
eqeltrd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
17 |
1
|
frlmlmod |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋 ) → 𝐹 ∈ LMod ) |
18 |
16 7 17
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ LMod ) |
19 |
1
|
frlmsca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋 ) → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
20 |
16 7 19
|
syl2anc |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
21 |
8 20
|
eqtr3d |
⊢ ( 𝜑 → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝐹 ) ) |
22 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
23 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
24 |
|
lmodgrp |
⊢ ( 𝐹 ∈ LMod → 𝐹 ∈ Grp ) |
25 |
18 24
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
26 |
|
lmodgrp |
⊢ ( 𝑇 ∈ LMod → 𝑇 ∈ Grp ) |
27 |
6 26
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ Grp ) |
28 |
|
eleq1w |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
29 |
28
|
anbi2d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ) |
30 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∘f · 𝐴 ) = ( 𝑥 ∘f · 𝐴 ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝑧 = 𝑥 → ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) = ( 𝑇 Σg ( 𝑥 ∘f · 𝐴 ) ) ) |
32 |
31
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) ∈ 𝐶 ↔ ( 𝑇 Σg ( 𝑥 ∘f · 𝐴 ) ) ∈ 𝐶 ) ) |
33 |
29 32
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) ∈ 𝐶 ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑇 Σg ( 𝑥 ∘f · 𝐴 ) ) ∈ 𝐶 ) ) ) |
34 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
35 |
|
lmodcmn |
⊢ ( 𝑇 ∈ LMod → 𝑇 ∈ CMnd ) |
36 |
6 35
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ CMnd ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑇 ∈ CMnd ) |
38 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐼 ∈ 𝑋 ) |
39 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐶 ) ) → 𝑇 ∈ LMod ) |
40 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
41 |
8
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
42 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐶 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
43 |
40 42
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
44 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 ∈ 𝐶 ) |
45 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) |
46 |
3 12 4 45
|
lmodvscl |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 · 𝑦 ) ∈ 𝐶 ) |
47 |
39 43 44 46
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐶 ) |
48 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
49 |
1 48 2
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑋 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
50 |
7 49
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
51 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐴 : 𝐼 ⟶ 𝐶 ) |
52 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
53 |
47 50 51 38 38 52
|
off |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∘f · 𝐴 ) : 𝐼 ⟶ 𝐶 ) |
54 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∘f · 𝐴 ) ∈ V ) |
55 |
53
|
ffund |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → Fun ( 𝑧 ∘f · 𝐴 ) ) |
56 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 0g ‘ 𝑇 ) ∈ V ) |
57 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
58 |
1 57 2
|
frlmbasfsupp |
⊢ ( ( 𝐼 ∈ 𝑋 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 finSupp ( 0g ‘ 𝑅 ) ) |
59 |
7 58
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 finSupp ( 0g ‘ 𝑅 ) ) |
60 |
8
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) |
61 |
60
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝑇 ) ) = ( 0g ‘ 𝑅 ) ) |
62 |
61
|
breq2d |
⊢ ( 𝜑 → ( 𝑧 finSupp ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ↔ 𝑧 finSupp ( 0g ‘ 𝑅 ) ) ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 finSupp ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ↔ 𝑧 finSupp ( 0g ‘ 𝑅 ) ) ) |
64 |
59 63
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 finSupp ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) |
65 |
64
|
fsuppimpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 supp ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) ∈ Fin ) |
66 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 supp ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) ⊆ ( 𝑧 supp ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) ) |
67 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑇 ∈ LMod ) |
68 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑇 ) ) = ( 0g ‘ ( Scalar ‘ 𝑇 ) ) |
69 |
3 12 4 68 34
|
lmod0vs |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝑤 ∈ 𝐶 ) → ( ( 0g ‘ ( Scalar ‘ 𝑇 ) ) · 𝑤 ) = ( 0g ‘ 𝑇 ) ) |
70 |
67 69
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑤 ∈ 𝐶 ) → ( ( 0g ‘ ( Scalar ‘ 𝑇 ) ) · 𝑤 ) = ( 0g ‘ 𝑇 ) ) |
71 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ∈ V ) |
72 |
66 70 50 51 38 71
|
suppssof1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑧 ∘f · 𝐴 ) supp ( 0g ‘ 𝑇 ) ) ⊆ ( 𝑧 supp ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) ) |
73 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑧 ∘f · 𝐴 ) ∈ V ∧ Fun ( 𝑧 ∘f · 𝐴 ) ∧ ( 0g ‘ 𝑇 ) ∈ V ) ∧ ( ( 𝑧 supp ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) ∈ Fin ∧ ( ( 𝑧 ∘f · 𝐴 ) supp ( 0g ‘ 𝑇 ) ) ⊆ ( 𝑧 supp ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) ) ) → ( 𝑧 ∘f · 𝐴 ) finSupp ( 0g ‘ 𝑇 ) ) |
74 |
54 55 56 65 72 73
|
syl32anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∘f · 𝐴 ) finSupp ( 0g ‘ 𝑇 ) ) |
75 |
3 34 37 38 53 74
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) ∈ 𝐶 ) |
76 |
33 75
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑇 Σg ( 𝑥 ∘f · 𝐴 ) ) ∈ 𝐶 ) |
77 |
76 5
|
fmptd |
⊢ ( 𝜑 → 𝐸 : 𝐵 ⟶ 𝐶 ) |
78 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑇 ∈ CMnd ) |
79 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑋 ) |
80 |
|
eleq1w |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
81 |
80
|
anbi2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ) ) |
82 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∘f · 𝐴 ) = ( 𝑦 ∘f · 𝐴 ) ) |
83 |
82
|
feq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∘f · 𝐴 ) : 𝐼 ⟶ 𝐶 ↔ ( 𝑦 ∘f · 𝐴 ) : 𝐼 ⟶ 𝐶 ) ) |
84 |
81 83
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∘f · 𝐴 ) : 𝐼 ⟶ 𝐶 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∘f · 𝐴 ) : 𝐼 ⟶ 𝐶 ) ) ) |
85 |
84 53
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∘f · 𝐴 ) : 𝐼 ⟶ 𝐶 ) |
86 |
85
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ∘f · 𝐴 ) : 𝐼 ⟶ 𝐶 ) |
87 |
53
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑧 ∘f · 𝐴 ) : 𝐼 ⟶ 𝐶 ) |
88 |
82
|
breq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∘f · 𝐴 ) finSupp ( 0g ‘ 𝑇 ) ↔ ( 𝑦 ∘f · 𝐴 ) finSupp ( 0g ‘ 𝑇 ) ) ) |
89 |
81 88
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∘f · 𝐴 ) finSupp ( 0g ‘ 𝑇 ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∘f · 𝐴 ) finSupp ( 0g ‘ 𝑇 ) ) ) ) |
90 |
89 74
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∘f · 𝐴 ) finSupp ( 0g ‘ 𝑇 ) ) |
91 |
90
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ∘f · 𝐴 ) finSupp ( 0g ‘ 𝑇 ) ) |
92 |
74
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑧 ∘f · 𝐴 ) finSupp ( 0g ‘ 𝑇 ) ) |
93 |
3 34 23 78 79 86 87 91 92
|
gsumadd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑇 Σg ( ( 𝑦 ∘f · 𝐴 ) ∘f ( +g ‘ 𝑇 ) ( 𝑧 ∘f · 𝐴 ) ) ) = ( ( 𝑇 Σg ( 𝑦 ∘f · 𝐴 ) ) ( +g ‘ 𝑇 ) ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) ) ) |
94 |
2 22
|
lmodvacl |
⊢ ( ( 𝐹 ∈ LMod ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ∈ 𝐵 ) |
95 |
94
|
3expb |
⊢ ( ( 𝐹 ∈ LMod ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ∈ 𝐵 ) |
96 |
18 95
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ∈ 𝐵 ) |
97 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) → ( 𝑥 ∘f · 𝐴 ) = ( ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ) |
98 |
97
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) → ( 𝑇 Σg ( 𝑥 ∘f · 𝐴 ) ) = ( 𝑇 Σg ( ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ) ) |
99 |
|
ovex |
⊢ ( 𝑇 Σg ( ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ) ∈ V |
100 |
98 5 99
|
fvmpt |
⊢ ( ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ∈ 𝐵 → ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ) = ( 𝑇 Σg ( ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ) ) |
101 |
96 100
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ) = ( 𝑇 Σg ( ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ) ) |
102 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
103 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
104 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
105 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
106 |
1 2 102 79 103 104 105 22
|
frlmplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) = ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) |
107 |
106
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) = ( ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ∘f · 𝐴 ) ) |
108 |
1 48 2
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑋 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
109 |
7 108
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
110 |
109
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
111 |
110
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 Fn 𝐼 ) |
112 |
50
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
113 |
112
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 Fn 𝐼 ) |
114 |
111 113 79 79 52
|
offn |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) Fn 𝐼 ) |
115 |
9
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn 𝐼 ) |
116 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐴 Fn 𝐼 ) |
117 |
114 116 79 79 52
|
offn |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ∘f · 𝐴 ) Fn 𝐼 ) |
118 |
85
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∘f · 𝐴 ) Fn 𝐼 ) |
119 |
118
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ∘f · 𝐴 ) Fn 𝐼 ) |
120 |
53
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∘f · 𝐴 ) Fn 𝐼 ) |
121 |
120
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑧 ∘f · 𝐴 ) Fn 𝐼 ) |
122 |
119 121 79 79 52
|
offn |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ∘f · 𝐴 ) ∘f ( +g ‘ 𝑇 ) ( 𝑧 ∘f · 𝐴 ) ) Fn 𝐼 ) |
123 |
8
|
fveq2d |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ ( Scalar ‘ 𝑇 ) ) ) |
124 |
123
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( Scalar ‘ 𝑇 ) ) ) |
125 |
124
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ‘ 𝑥 ) ) = ( ( 𝑦 ‘ 𝑥 ) ( +g ‘ ( Scalar ‘ 𝑇 ) ) ( 𝑧 ‘ 𝑥 ) ) ) |
126 |
125
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑦 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ‘ 𝑥 ) ) · ( 𝐴 ‘ 𝑥 ) ) = ( ( ( 𝑦 ‘ 𝑥 ) ( +g ‘ ( Scalar ‘ 𝑇 ) ) ( 𝑧 ‘ 𝑥 ) ) · ( 𝐴 ‘ 𝑥 ) ) ) |
127 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑇 ∈ LMod ) |
128 |
110
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
129 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
130 |
128 129
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
131 |
112
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑧 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
132 |
131 129
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑧 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
133 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐴 : 𝐼 ⟶ 𝐶 ) |
134 |
133
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑥 ) ∈ 𝐶 ) |
135 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑇 ) ) = ( +g ‘ ( Scalar ‘ 𝑇 ) ) |
136 |
3 23 12 4 45 135
|
lmodvsdir |
⊢ ( ( 𝑇 ∈ LMod ∧ ( ( 𝑦 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ ( 𝑧 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝐶 ) ) → ( ( ( 𝑦 ‘ 𝑥 ) ( +g ‘ ( Scalar ‘ 𝑇 ) ) ( 𝑧 ‘ 𝑥 ) ) · ( 𝐴 ‘ 𝑥 ) ) = ( ( ( 𝑦 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ( +g ‘ 𝑇 ) ( ( 𝑧 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) ) |
137 |
127 130 132 134 136
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑦 ‘ 𝑥 ) ( +g ‘ ( Scalar ‘ 𝑇 ) ) ( 𝑧 ‘ 𝑥 ) ) · ( 𝐴 ‘ 𝑥 ) ) = ( ( ( 𝑦 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ( +g ‘ 𝑇 ) ( ( 𝑧 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) ) |
138 |
126 137
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑦 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ‘ 𝑥 ) ) · ( 𝐴 ‘ 𝑥 ) ) = ( ( ( 𝑦 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ( +g ‘ 𝑇 ) ( ( 𝑧 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) ) |
139 |
111
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑦 Fn 𝐼 ) |
140 |
113
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑧 Fn 𝐼 ) |
141 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑋 ) |
142 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
143 |
|
fnfvof |
⊢ ( ( ( 𝑦 Fn 𝐼 ∧ 𝑧 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼 ) ) → ( ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ‘ 𝑥 ) = ( ( 𝑦 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ‘ 𝑥 ) ) ) |
144 |
139 140 141 142 143
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ‘ 𝑥 ) = ( ( 𝑦 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ‘ 𝑥 ) ) ) |
145 |
144
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) = ( ( ( 𝑦 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ‘ 𝑥 ) ) · ( 𝐴 ‘ 𝑥 ) ) ) |
146 |
115
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐴 Fn 𝐼 ) |
147 |
|
fnfvof |
⊢ ( ( ( 𝑦 Fn 𝐼 ∧ 𝐴 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼 ) ) → ( ( 𝑦 ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( 𝑦 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) |
148 |
139 146 141 142 147
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( 𝑦 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) |
149 |
|
fnfvof |
⊢ ( ( ( 𝑧 Fn 𝐼 ∧ 𝐴 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼 ) ) → ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( 𝑧 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) |
150 |
140 146 141 142 149
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( 𝑧 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) |
151 |
148 150
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑦 ∘f · 𝐴 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) = ( ( ( 𝑦 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ( +g ‘ 𝑇 ) ( ( 𝑧 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) ) |
152 |
138 145 151
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) = ( ( ( 𝑦 ∘f · 𝐴 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) ) |
153 |
114
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) Fn 𝐼 ) |
154 |
|
fnfvof |
⊢ ( ( ( ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) Fn 𝐼 ∧ 𝐴 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼 ) ) → ( ( ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) |
155 |
153 146 141 142 154
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) |
156 |
119
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∘f · 𝐴 ) Fn 𝐼 ) |
157 |
121
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑧 ∘f · 𝐴 ) Fn 𝐼 ) |
158 |
|
fnfvof |
⊢ ( ( ( ( 𝑦 ∘f · 𝐴 ) Fn 𝐼 ∧ ( 𝑧 ∘f · 𝐴 ) Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼 ) ) → ( ( ( 𝑦 ∘f · 𝐴 ) ∘f ( +g ‘ 𝑇 ) ( 𝑧 ∘f · 𝐴 ) ) ‘ 𝑥 ) = ( ( ( 𝑦 ∘f · 𝐴 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) ) |
159 |
156 157 141 142 158
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑦 ∘f · 𝐴 ) ∘f ( +g ‘ 𝑇 ) ( 𝑧 ∘f · 𝐴 ) ) ‘ 𝑥 ) = ( ( ( 𝑦 ∘f · 𝐴 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) ) |
160 |
152 155 159
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∘f · 𝐴 ) ∘f ( +g ‘ 𝑇 ) ( 𝑧 ∘f · 𝐴 ) ) ‘ 𝑥 ) ) |
161 |
117 122 160
|
eqfnfvd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ∘f · 𝐴 ) = ( ( 𝑦 ∘f · 𝐴 ) ∘f ( +g ‘ 𝑇 ) ( 𝑧 ∘f · 𝐴 ) ) ) |
162 |
107 161
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) = ( ( 𝑦 ∘f · 𝐴 ) ∘f ( +g ‘ 𝑇 ) ( 𝑧 ∘f · 𝐴 ) ) ) |
163 |
162
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑇 Σg ( ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ) = ( 𝑇 Σg ( ( 𝑦 ∘f · 𝐴 ) ∘f ( +g ‘ 𝑇 ) ( 𝑧 ∘f · 𝐴 ) ) ) ) |
164 |
101 163
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ) = ( 𝑇 Σg ( ( 𝑦 ∘f · 𝐴 ) ∘f ( +g ‘ 𝑇 ) ( 𝑧 ∘f · 𝐴 ) ) ) ) |
165 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∘f · 𝐴 ) = ( 𝑦 ∘f · 𝐴 ) ) |
166 |
165
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑇 Σg ( 𝑥 ∘f · 𝐴 ) ) = ( 𝑇 Σg ( 𝑦 ∘f · 𝐴 ) ) ) |
167 |
|
ovex |
⊢ ( 𝑇 Σg ( 𝑦 ∘f · 𝐴 ) ) ∈ V |
168 |
166 5 167
|
fvmpt |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝐸 ‘ 𝑦 ) = ( 𝑇 Σg ( 𝑦 ∘f · 𝐴 ) ) ) |
169 |
168
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑇 Σg ( 𝑦 ∘f · 𝐴 ) ) ) |
170 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∘f · 𝐴 ) = ( 𝑧 ∘f · 𝐴 ) ) |
171 |
170
|
oveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑇 Σg ( 𝑥 ∘f · 𝐴 ) ) = ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) ) |
172 |
|
ovex |
⊢ ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) ∈ V |
173 |
171 5 172
|
fvmpt |
⊢ ( 𝑧 ∈ 𝐵 → ( 𝐸 ‘ 𝑧 ) = ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) ) |
174 |
173
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑧 ) = ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) ) |
175 |
169 174
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝑇 ) ( 𝐸 ‘ 𝑧 ) ) = ( ( 𝑇 Σg ( 𝑦 ∘f · 𝐴 ) ) ( +g ‘ 𝑇 ) ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) ) ) |
176 |
93 164 175
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝐹 ) 𝑧 ) ) = ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝑇 ) ( 𝐸 ‘ 𝑧 ) ) ) |
177 |
2 3 22 23 25 27 77 176
|
isghmd |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐹 GrpHom 𝑇 ) ) |
178 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → 𝑇 ∈ LMod ) |
179 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑋 ) |
180 |
21
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
181 |
180
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ↔ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) ) |
182 |
181
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
183 |
182
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
184 |
53
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑧 ∘f · 𝐴 ) : 𝐼 ⟶ 𝐶 ) |
185 |
184
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ∈ 𝐶 ) |
186 |
53
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∘f · 𝐴 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) ) |
187 |
186 74
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) finSupp ( 0g ‘ 𝑇 ) ) |
188 |
187
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) finSupp ( 0g ‘ 𝑇 ) ) |
189 |
3 12 45 34 23 4 178 179 183 185 188
|
gsumvsmul |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑇 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 · ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) ) ) = ( 𝑦 · ( 𝑇 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) ) ) ) |
190 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → 𝐹 ∈ LMod ) |
191 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
192 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
193 |
2 11 10 13
|
lmodvscl |
⊢ ( ( 𝐹 ∈ LMod ∧ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∈ 𝐵 ) |
194 |
190 191 192 193
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∈ 𝐵 ) |
195 |
1 48 2
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑋 ∧ ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∈ 𝐵 ) → ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
196 |
179 194 195
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
197 |
196
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) Fn 𝐼 ) |
198 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → 𝐴 Fn 𝐼 ) |
199 |
197 198 179 179 52
|
offn |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) Fn 𝐼 ) |
200 |
|
dffn2 |
⊢ ( ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) Fn 𝐼 ↔ ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) : 𝐼 ⟶ V ) |
201 |
199 200
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) : 𝐼 ⟶ V ) |
202 |
201
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ‘ 𝑥 ) ) ) |
203 |
8
|
fveq2d |
⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( .r ‘ ( Scalar ‘ 𝑇 ) ) ) |
204 |
203
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( .r ‘ 𝑅 ) = ( .r ‘ ( Scalar ‘ 𝑇 ) ) ) |
205 |
204
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ( .r ‘ 𝑅 ) ( 𝑧 ‘ 𝑥 ) ) = ( 𝑦 ( .r ‘ ( Scalar ‘ 𝑇 ) ) ( 𝑧 ‘ 𝑥 ) ) ) |
206 |
205
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ( .r ‘ 𝑅 ) ( 𝑧 ‘ 𝑥 ) ) · ( 𝐴 ‘ 𝑥 ) ) = ( ( 𝑦 ( .r ‘ ( Scalar ‘ 𝑇 ) ) ( 𝑧 ‘ 𝑥 ) ) · ( 𝐴 ‘ 𝑥 ) ) ) |
207 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑇 ∈ LMod ) |
208 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
209 |
180
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
210 |
208 209
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
211 |
50
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑧 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
212 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
213 |
211 212
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑧 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
214 |
213
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑧 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
215 |
9
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑥 ) ∈ 𝐶 ) |
216 |
215
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑥 ) ∈ 𝐶 ) |
217 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑇 ) ) = ( .r ‘ ( Scalar ‘ 𝑇 ) ) |
218 |
3 12 4 45 217
|
lmodvsass |
⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ ( 𝑧 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝐶 ) ) → ( ( 𝑦 ( .r ‘ ( Scalar ‘ 𝑇 ) ) ( 𝑧 ‘ 𝑥 ) ) · ( 𝐴 ‘ 𝑥 ) ) = ( 𝑦 · ( ( 𝑧 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) ) |
219 |
207 210 214 216 218
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ( .r ‘ ( Scalar ‘ 𝑇 ) ) ( 𝑧 ‘ 𝑥 ) ) · ( 𝐴 ‘ 𝑥 ) ) = ( 𝑦 · ( ( 𝑧 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) ) |
220 |
206 219
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ( .r ‘ 𝑅 ) ( 𝑧 ‘ 𝑥 ) ) · ( 𝐴 ‘ 𝑥 ) ) = ( 𝑦 · ( ( 𝑧 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) ) |
221 |
197
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) Fn 𝐼 ) |
222 |
115
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐴 Fn 𝐼 ) |
223 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑋 ) |
224 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
225 |
|
fnfvof |
⊢ ( ( ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) Fn 𝐼 ∧ 𝐴 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼 ) ) → ( ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) |
226 |
221 222 223 224 225
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) |
227 |
20
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
228 |
227
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
229 |
208 228
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
230 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑧 ∈ 𝐵 ) |
231 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
232 |
1 2 48 223 229 230 224 10 231
|
frlmvscaval |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ‘ 𝑥 ) = ( 𝑦 ( .r ‘ 𝑅 ) ( 𝑧 ‘ 𝑥 ) ) ) |
233 |
232
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) = ( ( 𝑦 ( .r ‘ 𝑅 ) ( 𝑧 ‘ 𝑥 ) ) · ( 𝐴 ‘ 𝑥 ) ) ) |
234 |
226 233
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( 𝑦 ( .r ‘ 𝑅 ) ( 𝑧 ‘ 𝑥 ) ) · ( 𝐴 ‘ 𝑥 ) ) ) |
235 |
50
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 Fn 𝐼 ) |
236 |
235
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 Fn 𝐼 ) |
237 |
236
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑧 Fn 𝐼 ) |
238 |
237 222 223 224 149
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( 𝑧 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) |
239 |
238
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 · ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) = ( 𝑦 · ( ( 𝑧 ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) ) |
240 |
220 234 239
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ‘ 𝑥 ) = ( 𝑦 · ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) ) |
241 |
240
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 · ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) ) ) |
242 |
202 241
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 · ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) ) ) |
243 |
242
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑇 Σg ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ) = ( 𝑇 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 · ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) ) ) ) |
244 |
184
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑧 ∘f · 𝐴 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) ) |
245 |
244
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) = ( 𝑇 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) ) ) |
246 |
245
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 · ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) ) = ( 𝑦 · ( 𝑇 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑧 ∘f · 𝐴 ) ‘ 𝑥 ) ) ) ) ) |
247 |
189 243 246
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑇 Σg ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ) = ( 𝑦 · ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) ) ) |
248 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) → ( 𝑥 ∘f · 𝐴 ) = ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ) |
249 |
248
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) → ( 𝑇 Σg ( 𝑥 ∘f · 𝐴 ) ) = ( 𝑇 Σg ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ) ) |
250 |
|
ovex |
⊢ ( 𝑇 Σg ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ) ∈ V |
251 |
249 5 250
|
fvmpt |
⊢ ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∈ 𝐵 → ( 𝐸 ‘ ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ) = ( 𝑇 Σg ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ) ) |
252 |
194 251
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ) = ( 𝑇 Σg ( ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ∘f · 𝐴 ) ) ) |
253 |
173
|
oveq2d |
⊢ ( 𝑧 ∈ 𝐵 → ( 𝑦 · ( 𝐸 ‘ 𝑧 ) ) = ( 𝑦 · ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) ) ) |
254 |
253
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 · ( 𝐸 ‘ 𝑧 ) ) = ( 𝑦 · ( 𝑇 Σg ( 𝑧 ∘f · 𝐴 ) ) ) ) |
255 |
247 252 254
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑦 ( ·𝑠 ‘ 𝐹 ) 𝑧 ) ) = ( 𝑦 · ( 𝐸 ‘ 𝑧 ) ) ) |
256 |
2 10 4 11 12 13 18 6 21 177 255
|
islmhmd |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐹 LMHom 𝑇 ) ) |