| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmup.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
| 2 |
|
frlmup.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 3 |
|
frlmup.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
| 4 |
|
frlmup.v |
⊢ · = ( ·𝑠 ‘ 𝑇 ) |
| 5 |
|
frlmup.e |
⊢ 𝐸 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑇 Σg ( 𝑥 ∘f · 𝐴 ) ) ) |
| 6 |
|
frlmup.t |
⊢ ( 𝜑 → 𝑇 ∈ LMod ) |
| 7 |
|
frlmup.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) |
| 8 |
|
frlmup.r |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑇 ) ) |
| 9 |
|
frlmup.a |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐶 ) |
| 10 |
|
frlmup.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) |
| 11 |
|
frlmup.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
| 12 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
| 13 |
12
|
lmodring |
⊢ ( 𝑇 ∈ LMod → ( Scalar ‘ 𝑇 ) ∈ Ring ) |
| 14 |
6 13
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝑇 ) ∈ Ring ) |
| 15 |
8 14
|
eqeltrd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 16 |
11 1 2
|
uvcff |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋 ) → 𝑈 : 𝐼 ⟶ 𝐵 ) |
| 17 |
15 7 16
|
syl2anc |
⊢ ( 𝜑 → 𝑈 : 𝐼 ⟶ 𝐵 ) |
| 18 |
17 10
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑌 ) ∈ 𝐵 ) |
| 19 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑌 ) → ( 𝑥 ∘f · 𝐴 ) = ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑌 ) → ( 𝑇 Σg ( 𝑥 ∘f · 𝐴 ) ) = ( 𝑇 Σg ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ) ) |
| 21 |
|
ovex |
⊢ ( 𝑇 Σg ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ) ∈ V |
| 22 |
20 5 21
|
fvmpt |
⊢ ( ( 𝑈 ‘ 𝑌 ) ∈ 𝐵 → ( 𝐸 ‘ ( 𝑈 ‘ 𝑌 ) ) = ( 𝑇 Σg ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ) ) |
| 23 |
18 22
|
syl |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑈 ‘ 𝑌 ) ) = ( 𝑇 Σg ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ) ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
| 25 |
|
lmodcmn |
⊢ ( 𝑇 ∈ LMod → 𝑇 ∈ CMnd ) |
| 26 |
|
cmnmnd |
⊢ ( 𝑇 ∈ CMnd → 𝑇 ∈ Mnd ) |
| 27 |
6 25 26
|
3syl |
⊢ ( 𝜑 → 𝑇 ∈ Mnd ) |
| 28 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 30 |
1 29 2
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑋 ∧ ( 𝑈 ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑈 ‘ 𝑌 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 31 |
7 18 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑌 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 32 |
8
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 33 |
32
|
feq3d |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑌 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ↔ ( 𝑈 ‘ 𝑌 ) : 𝐼 ⟶ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ) |
| 34 |
31 33
|
mpbid |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑌 ) : 𝐼 ⟶ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 35 |
12 28 4 3 6 34 9 7
|
lcomf |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) : 𝐼 ⟶ 𝐶 ) |
| 36 |
31
|
ffnd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑌 ) Fn 𝐼 ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( 𝑈 ‘ 𝑌 ) Fn 𝐼 ) |
| 38 |
9
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn 𝐼 ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → 𝐴 Fn 𝐼 ) |
| 40 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → 𝐼 ∈ 𝑋 ) |
| 41 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) → 𝑥 ∈ 𝐼 ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → 𝑥 ∈ 𝐼 ) |
| 43 |
|
fnfvof |
⊢ ( ( ( ( 𝑈 ‘ 𝑌 ) Fn 𝐼 ∧ 𝐴 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼 ) ) → ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) |
| 44 |
37 39 40 42 43
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) |
| 45 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → 𝑅 ∈ Ring ) |
| 46 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → 𝑌 ∈ 𝐼 ) |
| 47 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) → 𝑥 ≠ 𝑌 ) |
| 48 |
47
|
necomd |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) → 𝑌 ≠ 𝑥 ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → 𝑌 ≠ 𝑥 ) |
| 50 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 51 |
11 45 40 46 42 49 50
|
uvcvv0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
| 52 |
8
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 54 |
51 53
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 55 |
54
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑇 ) ) · ( 𝐴 ‘ 𝑥 ) ) ) |
| 56 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → 𝑇 ∈ LMod ) |
| 57 |
|
ffvelcdm |
⊢ ( ( 𝐴 : 𝐼 ⟶ 𝐶 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑥 ) ∈ 𝐶 ) |
| 58 |
9 41 57
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( 𝐴 ‘ 𝑥 ) ∈ 𝐶 ) |
| 59 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑇 ) ) = ( 0g ‘ ( Scalar ‘ 𝑇 ) ) |
| 60 |
3 12 4 59 24
|
lmod0vs |
⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝐶 ) → ( ( 0g ‘ ( Scalar ‘ 𝑇 ) ) · ( 𝐴 ‘ 𝑥 ) ) = ( 0g ‘ 𝑇 ) ) |
| 61 |
56 58 60
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑇 ) ) · ( 𝐴 ‘ 𝑥 ) ) = ( 0g ‘ 𝑇 ) ) |
| 62 |
44 55 61
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ‘ 𝑥 ) = ( 0g ‘ 𝑇 ) ) |
| 63 |
35 62
|
suppss |
⊢ ( 𝜑 → ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) supp ( 0g ‘ 𝑇 ) ) ⊆ { 𝑌 } ) |
| 64 |
3 24 27 7 10 35 63
|
gsumpt |
⊢ ( 𝜑 → ( 𝑇 Σg ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ) = ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ‘ 𝑌 ) ) |
| 65 |
|
fnfvof |
⊢ ( ( ( ( 𝑈 ‘ 𝑌 ) Fn 𝐼 ∧ 𝐴 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑋 ∧ 𝑌 ∈ 𝐼 ) ) → ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ‘ 𝑌 ) = ( ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑌 ) · ( 𝐴 ‘ 𝑌 ) ) ) |
| 66 |
36 38 7 10 65
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ‘ 𝑌 ) = ( ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑌 ) · ( 𝐴 ‘ 𝑌 ) ) ) |
| 67 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 68 |
11 15 7 10 67
|
uvcvv1 |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
| 69 |
8
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 70 |
68 69
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑌 ) = ( 1r ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 71 |
70
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑌 ) · ( 𝐴 ‘ 𝑌 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝑇 ) ) · ( 𝐴 ‘ 𝑌 ) ) ) |
| 72 |
9 10
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑌 ) ∈ 𝐶 ) |
| 73 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑇 ) ) = ( 1r ‘ ( Scalar ‘ 𝑇 ) ) |
| 74 |
3 12 4 73
|
lmodvs1 |
⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐴 ‘ 𝑌 ) ∈ 𝐶 ) → ( ( 1r ‘ ( Scalar ‘ 𝑇 ) ) · ( 𝐴 ‘ 𝑌 ) ) = ( 𝐴 ‘ 𝑌 ) ) |
| 75 |
6 72 74
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝑇 ) ) · ( 𝐴 ‘ 𝑌 ) ) = ( 𝐴 ‘ 𝑌 ) ) |
| 76 |
66 71 75
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ‘ 𝑌 ) = ( 𝐴 ‘ 𝑌 ) ) |
| 77 |
23 64 76
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑈 ‘ 𝑌 ) ) = ( 𝐴 ‘ 𝑌 ) ) |