Step |
Hyp |
Ref |
Expression |
1 |
|
frlmup.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
2 |
|
frlmup.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
|
frlmup.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
4 |
|
frlmup.v |
⊢ · = ( ·𝑠 ‘ 𝑇 ) |
5 |
|
frlmup.e |
⊢ 𝐸 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑇 Σg ( 𝑥 ∘f · 𝐴 ) ) ) |
6 |
|
frlmup.t |
⊢ ( 𝜑 → 𝑇 ∈ LMod ) |
7 |
|
frlmup.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) |
8 |
|
frlmup.r |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑇 ) ) |
9 |
|
frlmup.a |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐶 ) |
10 |
|
frlmup.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) |
11 |
|
frlmup.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
12 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
13 |
12
|
lmodring |
⊢ ( 𝑇 ∈ LMod → ( Scalar ‘ 𝑇 ) ∈ Ring ) |
14 |
6 13
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝑇 ) ∈ Ring ) |
15 |
8 14
|
eqeltrd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
16 |
11 1 2
|
uvcff |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋 ) → 𝑈 : 𝐼 ⟶ 𝐵 ) |
17 |
15 7 16
|
syl2anc |
⊢ ( 𝜑 → 𝑈 : 𝐼 ⟶ 𝐵 ) |
18 |
17 10
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑌 ) ∈ 𝐵 ) |
19 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑌 ) → ( 𝑥 ∘f · 𝐴 ) = ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑌 ) → ( 𝑇 Σg ( 𝑥 ∘f · 𝐴 ) ) = ( 𝑇 Σg ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ) ) |
21 |
|
ovex |
⊢ ( 𝑇 Σg ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ) ∈ V |
22 |
20 5 21
|
fvmpt |
⊢ ( ( 𝑈 ‘ 𝑌 ) ∈ 𝐵 → ( 𝐸 ‘ ( 𝑈 ‘ 𝑌 ) ) = ( 𝑇 Σg ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ) ) |
23 |
18 22
|
syl |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑈 ‘ 𝑌 ) ) = ( 𝑇 Σg ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ) ) |
24 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
25 |
|
lmodcmn |
⊢ ( 𝑇 ∈ LMod → 𝑇 ∈ CMnd ) |
26 |
|
cmnmnd |
⊢ ( 𝑇 ∈ CMnd → 𝑇 ∈ Mnd ) |
27 |
6 25 26
|
3syl |
⊢ ( 𝜑 → 𝑇 ∈ Mnd ) |
28 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
30 |
1 29 2
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑋 ∧ ( 𝑈 ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑈 ‘ 𝑌 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
31 |
7 18 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑌 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
32 |
8
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
33 |
32
|
feq3d |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑌 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ↔ ( 𝑈 ‘ 𝑌 ) : 𝐼 ⟶ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ) |
34 |
31 33
|
mpbid |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑌 ) : 𝐼 ⟶ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
35 |
12 28 4 3 6 34 9 7
|
lcomf |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) : 𝐼 ⟶ 𝐶 ) |
36 |
31
|
ffnd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑌 ) Fn 𝐼 ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( 𝑈 ‘ 𝑌 ) Fn 𝐼 ) |
38 |
9
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn 𝐼 ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → 𝐴 Fn 𝐼 ) |
40 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → 𝐼 ∈ 𝑋 ) |
41 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) → 𝑥 ∈ 𝐼 ) |
42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → 𝑥 ∈ 𝐼 ) |
43 |
|
fnfvof |
⊢ ( ( ( ( 𝑈 ‘ 𝑌 ) Fn 𝐼 ∧ 𝐴 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼 ) ) → ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) |
44 |
37 39 40 42 43
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ‘ 𝑥 ) = ( ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) ) |
45 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → 𝑅 ∈ Ring ) |
46 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → 𝑌 ∈ 𝐼 ) |
47 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) → 𝑥 ≠ 𝑌 ) |
48 |
47
|
necomd |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) → 𝑌 ≠ 𝑥 ) |
49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → 𝑌 ≠ 𝑥 ) |
50 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
51 |
11 45 40 46 42 49 50
|
uvcvv0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
52 |
8
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) |
54 |
51 53
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) |
55 |
54
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑥 ) · ( 𝐴 ‘ 𝑥 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑇 ) ) · ( 𝐴 ‘ 𝑥 ) ) ) |
56 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → 𝑇 ∈ LMod ) |
57 |
|
ffvelrn |
⊢ ( ( 𝐴 : 𝐼 ⟶ 𝐶 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑥 ) ∈ 𝐶 ) |
58 |
9 41 57
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( 𝐴 ‘ 𝑥 ) ∈ 𝐶 ) |
59 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑇 ) ) = ( 0g ‘ ( Scalar ‘ 𝑇 ) ) |
60 |
3 12 4 59 24
|
lmod0vs |
⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝐶 ) → ( ( 0g ‘ ( Scalar ‘ 𝑇 ) ) · ( 𝐴 ‘ 𝑥 ) ) = ( 0g ‘ 𝑇 ) ) |
61 |
56 58 60
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑇 ) ) · ( 𝐴 ‘ 𝑥 ) ) = ( 0g ‘ 𝑇 ) ) |
62 |
44 55 61
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ‘ 𝑥 ) = ( 0g ‘ 𝑇 ) ) |
63 |
35 62
|
suppss |
⊢ ( 𝜑 → ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) supp ( 0g ‘ 𝑇 ) ) ⊆ { 𝑌 } ) |
64 |
3 24 27 7 10 35 63
|
gsumpt |
⊢ ( 𝜑 → ( 𝑇 Σg ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ) = ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ‘ 𝑌 ) ) |
65 |
|
fnfvof |
⊢ ( ( ( ( 𝑈 ‘ 𝑌 ) Fn 𝐼 ∧ 𝐴 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑋 ∧ 𝑌 ∈ 𝐼 ) ) → ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ‘ 𝑌 ) = ( ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑌 ) · ( 𝐴 ‘ 𝑌 ) ) ) |
66 |
36 38 7 10 65
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ‘ 𝑌 ) = ( ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑌 ) · ( 𝐴 ‘ 𝑌 ) ) ) |
67 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
68 |
11 15 7 10 67
|
uvcvv1 |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
69 |
8
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑇 ) ) ) |
70 |
68 69
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑌 ) = ( 1r ‘ ( Scalar ‘ 𝑇 ) ) ) |
71 |
70
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑈 ‘ 𝑌 ) ‘ 𝑌 ) · ( 𝐴 ‘ 𝑌 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝑇 ) ) · ( 𝐴 ‘ 𝑌 ) ) ) |
72 |
9 10
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑌 ) ∈ 𝐶 ) |
73 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑇 ) ) = ( 1r ‘ ( Scalar ‘ 𝑇 ) ) |
74 |
3 12 4 73
|
lmodvs1 |
⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐴 ‘ 𝑌 ) ∈ 𝐶 ) → ( ( 1r ‘ ( Scalar ‘ 𝑇 ) ) · ( 𝐴 ‘ 𝑌 ) ) = ( 𝐴 ‘ 𝑌 ) ) |
75 |
6 72 74
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝑇 ) ) · ( 𝐴 ‘ 𝑌 ) ) = ( 𝐴 ‘ 𝑌 ) ) |
76 |
66 71 75
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑈 ‘ 𝑌 ) ∘f · 𝐴 ) ‘ 𝑌 ) = ( 𝐴 ‘ 𝑌 ) ) |
77 |
23 64 76
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑈 ‘ 𝑌 ) ) = ( 𝐴 ‘ 𝑌 ) ) |