Step |
Hyp |
Ref |
Expression |
1 |
|
frlmup4.r |
⊢ 𝑅 = ( Scalar ‘ 𝑇 ) |
2 |
|
frlmup4.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
3 |
|
frlmup4.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
4 |
|
frlmup4.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
6 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) |
7 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) |
8 |
|
simp1 |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → 𝑇 ∈ LMod ) |
9 |
|
simp2 |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → 𝐼 ∈ 𝑋 ) |
10 |
1
|
a1i |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → 𝑅 = ( Scalar ‘ 𝑇 ) ) |
11 |
|
simp3 |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → 𝐴 : 𝐼 ⟶ 𝐶 ) |
12 |
2 5 4 6 7 8 9 10 11
|
frlmup1 |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) ∈ ( 𝐹 LMHom 𝑇 ) ) |
13 |
|
ovex |
⊢ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ∈ V |
14 |
13 7
|
fnmpti |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) Fn ( Base ‘ 𝐹 ) |
15 |
1
|
lmodring |
⊢ ( 𝑇 ∈ LMod → 𝑅 ∈ Ring ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → 𝑅 ∈ Ring ) |
17 |
3 2 5
|
uvcff |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋 ) → 𝑈 : 𝐼 ⟶ ( Base ‘ 𝐹 ) ) |
18 |
16 9 17
|
syl2anc |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → 𝑈 : 𝐼 ⟶ ( Base ‘ 𝐹 ) ) |
19 |
18
|
ffnd |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → 𝑈 Fn 𝐼 ) |
20 |
18
|
frnd |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → ran 𝑈 ⊆ ( Base ‘ 𝐹 ) ) |
21 |
|
fnco |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) Fn ( Base ‘ 𝐹 ) ∧ 𝑈 Fn 𝐼 ∧ ran 𝑈 ⊆ ( Base ‘ 𝐹 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) ∘ 𝑈 ) Fn 𝐼 ) |
22 |
14 19 20 21
|
mp3an2i |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) ∘ 𝑈 ) Fn 𝐼 ) |
23 |
|
ffn |
⊢ ( 𝐴 : 𝐼 ⟶ 𝐶 → 𝐴 Fn 𝐼 ) |
24 |
23
|
3ad2ant3 |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → 𝐴 Fn 𝐼 ) |
25 |
18
|
adantr |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑈 : 𝐼 ⟶ ( Base ‘ 𝐹 ) ) |
26 |
25
|
ffnd |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑈 Fn 𝐼 ) |
27 |
|
simpr |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) |
28 |
|
fvco2 |
⊢ ( ( 𝑈 Fn 𝐼 ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) ∘ 𝑈 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) ‘ ( 𝑈 ‘ 𝑦 ) ) ) |
29 |
26 27 28
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) ∘ 𝑈 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) ‘ ( 𝑈 ‘ 𝑦 ) ) ) |
30 |
|
simpl1 |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑇 ∈ LMod ) |
31 |
|
simpl2 |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ 𝑋 ) |
32 |
1
|
a1i |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑅 = ( Scalar ‘ 𝑇 ) ) |
33 |
|
simpl3 |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) ∧ 𝑦 ∈ 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐶 ) |
34 |
2 5 4 6 7 30 31 32 33 27 3
|
frlmup2 |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) ‘ ( 𝑈 ‘ 𝑦 ) ) = ( 𝐴 ‘ 𝑦 ) ) |
35 |
29 34
|
eqtrd |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) ∘ 𝑈 ) ‘ 𝑦 ) = ( 𝐴 ‘ 𝑦 ) ) |
36 |
22 24 35
|
eqfnfvd |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) ∘ 𝑈 ) = 𝐴 ) |
37 |
|
coeq1 |
⊢ ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) → ( 𝑚 ∘ 𝑈 ) = ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) ∘ 𝑈 ) ) |
38 |
37
|
eqeq1d |
⊢ ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) → ( ( 𝑚 ∘ 𝑈 ) = 𝐴 ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) ∘ 𝑈 ) = 𝐴 ) ) |
39 |
38
|
rspcev |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) ∈ ( 𝐹 LMHom 𝑇 ) ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑇 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑇 ) 𝐴 ) ) ) ∘ 𝑈 ) = 𝐴 ) → ∃ 𝑚 ∈ ( 𝐹 LMHom 𝑇 ) ( 𝑚 ∘ 𝑈 ) = 𝐴 ) |
40 |
12 36 39
|
syl2anc |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → ∃ 𝑚 ∈ ( 𝐹 LMHom 𝑇 ) ( 𝑚 ∘ 𝑈 ) = 𝐴 ) |
41 |
18
|
ffund |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → Fun 𝑈 ) |
42 |
|
funcoeqres |
⊢ ( ( Fun 𝑈 ∧ ( 𝑚 ∘ 𝑈 ) = 𝐴 ) → ( 𝑚 ↾ ran 𝑈 ) = ( 𝐴 ∘ ◡ 𝑈 ) ) |
43 |
42
|
ex |
⊢ ( Fun 𝑈 → ( ( 𝑚 ∘ 𝑈 ) = 𝐴 → ( 𝑚 ↾ ran 𝑈 ) = ( 𝐴 ∘ ◡ 𝑈 ) ) ) |
44 |
43
|
ralrimivw |
⊢ ( Fun 𝑈 → ∀ 𝑚 ∈ ( 𝐹 LMHom 𝑇 ) ( ( 𝑚 ∘ 𝑈 ) = 𝐴 → ( 𝑚 ↾ ran 𝑈 ) = ( 𝐴 ∘ ◡ 𝑈 ) ) ) |
45 |
41 44
|
syl |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → ∀ 𝑚 ∈ ( 𝐹 LMHom 𝑇 ) ( ( 𝑚 ∘ 𝑈 ) = 𝐴 → ( 𝑚 ↾ ran 𝑈 ) = ( 𝐴 ∘ ◡ 𝑈 ) ) ) |
46 |
|
eqid |
⊢ ( LBasis ‘ 𝐹 ) = ( LBasis ‘ 𝐹 ) |
47 |
2 3 46
|
frlmlbs |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋 ) → ran 𝑈 ∈ ( LBasis ‘ 𝐹 ) ) |
48 |
16 9 47
|
syl2anc |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → ran 𝑈 ∈ ( LBasis ‘ 𝐹 ) ) |
49 |
|
eqid |
⊢ ( LSpan ‘ 𝐹 ) = ( LSpan ‘ 𝐹 ) |
50 |
5 46 49
|
lbssp |
⊢ ( ran 𝑈 ∈ ( LBasis ‘ 𝐹 ) → ( ( LSpan ‘ 𝐹 ) ‘ ran 𝑈 ) = ( Base ‘ 𝐹 ) ) |
51 |
48 50
|
syl |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → ( ( LSpan ‘ 𝐹 ) ‘ ran 𝑈 ) = ( Base ‘ 𝐹 ) ) |
52 |
5 49
|
lspextmo |
⊢ ( ( ran 𝑈 ⊆ ( Base ‘ 𝐹 ) ∧ ( ( LSpan ‘ 𝐹 ) ‘ ran 𝑈 ) = ( Base ‘ 𝐹 ) ) → ∃* 𝑚 ∈ ( 𝐹 LMHom 𝑇 ) ( 𝑚 ↾ ran 𝑈 ) = ( 𝐴 ∘ ◡ 𝑈 ) ) |
53 |
20 51 52
|
syl2anc |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → ∃* 𝑚 ∈ ( 𝐹 LMHom 𝑇 ) ( 𝑚 ↾ ran 𝑈 ) = ( 𝐴 ∘ ◡ 𝑈 ) ) |
54 |
|
rmoim |
⊢ ( ∀ 𝑚 ∈ ( 𝐹 LMHom 𝑇 ) ( ( 𝑚 ∘ 𝑈 ) = 𝐴 → ( 𝑚 ↾ ran 𝑈 ) = ( 𝐴 ∘ ◡ 𝑈 ) ) → ( ∃* 𝑚 ∈ ( 𝐹 LMHom 𝑇 ) ( 𝑚 ↾ ran 𝑈 ) = ( 𝐴 ∘ ◡ 𝑈 ) → ∃* 𝑚 ∈ ( 𝐹 LMHom 𝑇 ) ( 𝑚 ∘ 𝑈 ) = 𝐴 ) ) |
55 |
45 53 54
|
sylc |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → ∃* 𝑚 ∈ ( 𝐹 LMHom 𝑇 ) ( 𝑚 ∘ 𝑈 ) = 𝐴 ) |
56 |
|
reu5 |
⊢ ( ∃! 𝑚 ∈ ( 𝐹 LMHom 𝑇 ) ( 𝑚 ∘ 𝑈 ) = 𝐴 ↔ ( ∃ 𝑚 ∈ ( 𝐹 LMHom 𝑇 ) ( 𝑚 ∘ 𝑈 ) = 𝐴 ∧ ∃* 𝑚 ∈ ( 𝐹 LMHom 𝑇 ) ( 𝑚 ∘ 𝑈 ) = 𝐴 ) ) |
57 |
40 55 56
|
sylanbrc |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴 : 𝐼 ⟶ 𝐶 ) → ∃! 𝑚 ∈ ( 𝐹 LMHom 𝑇 ) ( 𝑚 ∘ 𝑈 ) = 𝐴 ) |