| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frlmvplusgvalc.f | ⊢ 𝐹  =  ( 𝑅  freeLMod  𝐼 ) | 
						
							| 2 |  | frlmvplusgvalc.b | ⊢ 𝐵  =  ( Base ‘ 𝐹 ) | 
						
							| 3 |  | frlmvplusgvalc.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑉 ) | 
						
							| 4 |  | frlmvplusgvalc.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 5 |  | frlmvplusgvalc.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | frlmvplusgvalc.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | frlmvplusgvalc.j | ⊢ ( 𝜑  →  𝐽  ∈  𝐼 ) | 
						
							| 8 |  | frlmvplusgvalc.a | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 9 |  | frlmvplusgvalc.p | ⊢  ✚   =  ( +g ‘ 𝐹 ) | 
						
							| 10 | 1 2 3 4 5 6 8 9 | frlmplusgval | ⊢ ( 𝜑  →  ( 𝑋  ✚  𝑌 )  =  ( 𝑋  ∘f   +  𝑌 ) ) | 
						
							| 11 | 10 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑋  ✚  𝑌 ) ‘ 𝐽 )  =  ( ( 𝑋  ∘f   +  𝑌 ) ‘ 𝐽 ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 13 | 1 12 2 | frlmbasmap | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 ) ) | 
						
							| 14 | 4 5 13 | syl2anc | ⊢ ( 𝜑  →  𝑋  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 ) ) | 
						
							| 15 |  | fvexd | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  ∈  V ) | 
						
							| 16 | 15 4 | elmapd | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 )  ↔  𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 17 | 14 16 | mpbid | ⊢ ( 𝜑  →  𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 18 | 17 | ffnd | ⊢ ( 𝜑  →  𝑋  Fn  𝐼 ) | 
						
							| 19 | 1 12 2 | frlmbasmap | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 ) ) | 
						
							| 20 | 4 6 19 | syl2anc | ⊢ ( 𝜑  →  𝑌  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 ) ) | 
						
							| 21 | 15 4 | elmapd | ⊢ ( 𝜑  →  ( 𝑌  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐼 )  ↔  𝑌 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 22 | 20 21 | mpbid | ⊢ ( 𝜑  →  𝑌 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 23 | 22 | ffnd | ⊢ ( 𝜑  →  𝑌  Fn  𝐼 ) | 
						
							| 24 |  | fnfvof | ⊢ ( ( ( 𝑋  Fn  𝐼  ∧  𝑌  Fn  𝐼 )  ∧  ( 𝐼  ∈  𝑊  ∧  𝐽  ∈  𝐼 ) )  →  ( ( 𝑋  ∘f   +  𝑌 ) ‘ 𝐽 )  =  ( ( 𝑋 ‘ 𝐽 )  +  ( 𝑌 ‘ 𝐽 ) ) ) | 
						
							| 25 | 18 23 4 7 24 | syl22anc | ⊢ ( 𝜑  →  ( ( 𝑋  ∘f   +  𝑌 ) ‘ 𝐽 )  =  ( ( 𝑋 ‘ 𝐽 )  +  ( 𝑌 ‘ 𝐽 ) ) ) | 
						
							| 26 | 11 25 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑋  ✚  𝑌 ) ‘ 𝐽 )  =  ( ( 𝑋 ‘ 𝐽 )  +  ( 𝑌 ‘ 𝐽 ) ) ) |