Step |
Hyp |
Ref |
Expression |
1 |
|
frlmvplusgvalc.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
2 |
|
frlmvplusgvalc.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
|
frlmvplusgvalc.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
4 |
|
frlmvplusgvalc.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
5 |
|
frlmvplusgvalc.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
frlmvplusgvalc.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
frlmvplusgvalc.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) |
8 |
|
frlmvplusgvalc.a |
⊢ + = ( +g ‘ 𝑅 ) |
9 |
|
frlmvplusgvalc.p |
⊢ ✚ = ( +g ‘ 𝐹 ) |
10 |
1 2 3 4 5 6 8 9
|
frlmplusgval |
⊢ ( 𝜑 → ( 𝑋 ✚ 𝑌 ) = ( 𝑋 ∘f + 𝑌 ) ) |
11 |
10
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ✚ 𝑌 ) ‘ 𝐽 ) = ( ( 𝑋 ∘f + 𝑌 ) ‘ 𝐽 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
13 |
1 12 2
|
frlmbasmap |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
14 |
4 5 13
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
15 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) |
16 |
15 4
|
elmapd |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ) |
17 |
14 16
|
mpbid |
⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
18 |
17
|
ffnd |
⊢ ( 𝜑 → 𝑋 Fn 𝐼 ) |
19 |
1 12 2
|
frlmbasmap |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
20 |
4 6 19
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
21 |
15 4
|
elmapd |
⊢ ( 𝜑 → ( 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ 𝑌 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ) |
22 |
20 21
|
mpbid |
⊢ ( 𝜑 → 𝑌 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
23 |
22
|
ffnd |
⊢ ( 𝜑 → 𝑌 Fn 𝐼 ) |
24 |
|
fnfvof |
⊢ ( ( ( 𝑋 Fn 𝐼 ∧ 𝑌 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) ) → ( ( 𝑋 ∘f + 𝑌 ) ‘ 𝐽 ) = ( ( 𝑋 ‘ 𝐽 ) + ( 𝑌 ‘ 𝐽 ) ) ) |
25 |
18 23 4 7 24
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝑋 ∘f + 𝑌 ) ‘ 𝐽 ) = ( ( 𝑋 ‘ 𝐽 ) + ( 𝑌 ‘ 𝐽 ) ) ) |
26 |
11 25
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ✚ 𝑌 ) ‘ 𝐽 ) = ( ( 𝑋 ‘ 𝐽 ) + ( 𝑌 ‘ 𝐽 ) ) ) |