| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmvscaval.y |
⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) |
| 2 |
|
frlmvscaval.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 3 |
|
frlmvscaval.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 4 |
|
frlmvscaval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 5 |
|
frlmvscaval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 6 |
|
frlmvscaval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 7 |
|
frlmvscaval.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) |
| 8 |
|
frlmvscaval.v |
⊢ ∙ = ( ·𝑠 ‘ 𝑌 ) |
| 9 |
|
frlmvscaval.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 10 |
1 2 3 4 5 6 8 9
|
frlmvscafval |
⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ) |
| 11 |
10
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑋 ) ‘ 𝐽 ) = ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) ) |
| 12 |
|
fnconstg |
⊢ ( 𝐴 ∈ 𝐾 → ( 𝐼 × { 𝐴 } ) Fn 𝐼 ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → ( 𝐼 × { 𝐴 } ) Fn 𝐼 ) |
| 14 |
1 3 2
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 : 𝐼 ⟶ 𝐾 ) |
| 15 |
4 6 14
|
syl2anc |
⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ 𝐾 ) |
| 16 |
15
|
ffnd |
⊢ ( 𝜑 → 𝑋 Fn 𝐼 ) |
| 17 |
|
fnfvof |
⊢ ( ( ( ( 𝐼 × { 𝐴 } ) Fn 𝐼 ∧ 𝑋 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) ) → ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) = ( ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) · ( 𝑋 ‘ 𝐽 ) ) ) |
| 18 |
13 16 4 7 17
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) = ( ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) · ( 𝑋 ‘ 𝐽 ) ) ) |
| 19 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐽 ∈ 𝐼 ) → ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) = 𝐴 ) |
| 20 |
5 7 19
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) = 𝐴 ) |
| 21 |
20
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) · ( 𝑋 ‘ 𝐽 ) ) = ( 𝐴 · ( 𝑋 ‘ 𝐽 ) ) ) |
| 22 |
11 18 21
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋 ‘ 𝐽 ) ) ) |