| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frlmplusgvalb.f | ⊢ 𝐹  =  ( 𝑅  freeLMod  𝐼 ) | 
						
							| 2 |  | frlmplusgvalb.b | ⊢ 𝐵  =  ( Base ‘ 𝐹 ) | 
						
							| 3 |  | frlmplusgvalb.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 4 |  | frlmplusgvalb.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | frlmplusgvalb.z | ⊢ ( 𝜑  →  𝑍  ∈  𝐵 ) | 
						
							| 6 |  | frlmplusgvalb.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 7 |  | frlmvscavalb.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 8 |  | frlmvscavalb.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐾 ) | 
						
							| 9 |  | frlmvscavalb.v | ⊢  ∙   =  (  ·𝑠  ‘ 𝐹 ) | 
						
							| 10 |  | frlmvscavalb.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 11 | 1 7 2 | frlmbasmap | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑍  ∈  𝐵 )  →  𝑍  ∈  ( 𝐾  ↑m  𝐼 ) ) | 
						
							| 12 | 3 5 11 | syl2anc | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝐾  ↑m  𝐼 ) ) | 
						
							| 13 | 7 | fvexi | ⊢ 𝐾  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  𝐾  ∈  V ) | 
						
							| 15 | 14 3 | elmapd | ⊢ ( 𝜑  →  ( 𝑍  ∈  ( 𝐾  ↑m  𝐼 )  ↔  𝑍 : 𝐼 ⟶ 𝐾 ) ) | 
						
							| 16 | 12 15 | mpbid | ⊢ ( 𝜑  →  𝑍 : 𝐼 ⟶ 𝐾 ) | 
						
							| 17 | 16 | ffnd | ⊢ ( 𝜑  →  𝑍  Fn  𝐼 ) | 
						
							| 18 | 1 | frlmlmod | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  𝐹  ∈  LMod ) | 
						
							| 19 | 6 3 18 | syl2anc | ⊢ ( 𝜑  →  𝐹  ∈  LMod ) | 
						
							| 20 | 8 7 | eleqtrdi | ⊢ ( 𝜑  →  𝐴  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 21 | 1 | frlmsca | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  𝑅  =  ( Scalar ‘ 𝐹 ) ) | 
						
							| 22 | 6 3 21 | syl2anc | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝐹 ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) | 
						
							| 24 | 20 23 | eleqtrd | ⊢ ( 𝜑  →  𝐴  ∈  ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) | 
						
							| 25 |  | eqid | ⊢ ( Scalar ‘ 𝐹 )  =  ( Scalar ‘ 𝐹 ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐹 ) )  =  ( Base ‘ ( Scalar ‘ 𝐹 ) ) | 
						
							| 27 | 2 25 9 26 | lmodvscl | ⊢ ( ( 𝐹  ∈  LMod  ∧  𝐴  ∈  ( Base ‘ ( Scalar ‘ 𝐹 ) )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐴  ∙  𝑋 )  ∈  𝐵 ) | 
						
							| 28 | 19 24 4 27 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ∙  𝑋 )  ∈  𝐵 ) | 
						
							| 29 | 1 7 2 | frlmbasmap | ⊢ ( ( 𝐼  ∈  𝑊  ∧  ( 𝐴  ∙  𝑋 )  ∈  𝐵 )  →  ( 𝐴  ∙  𝑋 )  ∈  ( 𝐾  ↑m  𝐼 ) ) | 
						
							| 30 | 3 28 29 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ∙  𝑋 )  ∈  ( 𝐾  ↑m  𝐼 ) ) | 
						
							| 31 | 14 3 | elmapd | ⊢ ( 𝜑  →  ( ( 𝐴  ∙  𝑋 )  ∈  ( 𝐾  ↑m  𝐼 )  ↔  ( 𝐴  ∙  𝑋 ) : 𝐼 ⟶ 𝐾 ) ) | 
						
							| 32 | 30 31 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  ∙  𝑋 ) : 𝐼 ⟶ 𝐾 ) | 
						
							| 33 | 32 | ffnd | ⊢ ( 𝜑  →  ( 𝐴  ∙  𝑋 )  Fn  𝐼 ) | 
						
							| 34 |  | eqfnfv | ⊢ ( ( 𝑍  Fn  𝐼  ∧  ( 𝐴  ∙  𝑋 )  Fn  𝐼 )  →  ( 𝑍  =  ( 𝐴  ∙  𝑋 )  ↔  ∀ 𝑖  ∈  𝐼 ( 𝑍 ‘ 𝑖 )  =  ( ( 𝐴  ∙  𝑋 ) ‘ 𝑖 ) ) ) | 
						
							| 35 | 17 33 34 | syl2anc | ⊢ ( 𝜑  →  ( 𝑍  =  ( 𝐴  ∙  𝑋 )  ↔  ∀ 𝑖  ∈  𝐼 ( 𝑍 ‘ 𝑖 )  =  ( ( 𝐴  ∙  𝑋 ) ‘ 𝑖 ) ) ) | 
						
							| 36 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  𝐼  ∈  𝑊 ) | 
						
							| 37 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  𝐴  ∈  𝐾 ) | 
						
							| 38 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  𝑋  ∈  𝐵 ) | 
						
							| 39 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  𝑖  ∈  𝐼 ) | 
						
							| 40 | 1 2 7 36 37 38 39 9 10 | frlmvscaval | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝐴  ∙  𝑋 ) ‘ 𝑖 )  =  ( 𝐴  ·  ( 𝑋 ‘ 𝑖 ) ) ) | 
						
							| 41 | 40 | eqeq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑍 ‘ 𝑖 )  =  ( ( 𝐴  ∙  𝑋 ) ‘ 𝑖 )  ↔  ( 𝑍 ‘ 𝑖 )  =  ( 𝐴  ·  ( 𝑋 ‘ 𝑖 ) ) ) ) | 
						
							| 42 | 41 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  𝐼 ( 𝑍 ‘ 𝑖 )  =  ( ( 𝐴  ∙  𝑋 ) ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  𝐼 ( 𝑍 ‘ 𝑖 )  =  ( 𝐴  ·  ( 𝑋 ‘ 𝑖 ) ) ) ) | 
						
							| 43 | 35 42 | bitrd | ⊢ ( 𝜑  →  ( 𝑍  =  ( 𝐴  ∙  𝑋 )  ↔  ∀ 𝑖  ∈  𝐼 ( 𝑍 ‘ 𝑖 )  =  ( 𝐴  ·  ( 𝑋 ‘ 𝑖 ) ) ) ) |