| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frmdmnd.m | ⊢ 𝑀  =  ( freeMnd ‘ 𝐼 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 3 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 4 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 5 |  | wrd0 | ⊢ ∅  ∈  Word  𝐼 | 
						
							| 6 | 1 2 | frmdbas | ⊢ ( 𝐼  ∈  V  →  ( Base ‘ 𝑀 )  =  Word  𝐼 ) | 
						
							| 7 | 5 6 | eleqtrrid | ⊢ ( 𝐼  ∈  V  →  ∅  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 8 | 1 2 4 | frmdadd | ⊢ ( ( ∅  ∈  ( Base ‘ 𝑀 )  ∧  𝑥  ∈  ( Base ‘ 𝑀 ) )  →  ( ∅ ( +g ‘ 𝑀 ) 𝑥 )  =  ( ∅  ++  𝑥 ) ) | 
						
							| 9 | 7 8 | sylan | ⊢ ( ( 𝐼  ∈  V  ∧  𝑥  ∈  ( Base ‘ 𝑀 ) )  →  ( ∅ ( +g ‘ 𝑀 ) 𝑥 )  =  ( ∅  ++  𝑥 ) ) | 
						
							| 10 | 1 2 | frmdelbas | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑀 )  →  𝑥  ∈  Word  𝐼 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐼  ∈  V  ∧  𝑥  ∈  ( Base ‘ 𝑀 ) )  →  𝑥  ∈  Word  𝐼 ) | 
						
							| 12 |  | ccatlid | ⊢ ( 𝑥  ∈  Word  𝐼  →  ( ∅  ++  𝑥 )  =  𝑥 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐼  ∈  V  ∧  𝑥  ∈  ( Base ‘ 𝑀 ) )  →  ( ∅  ++  𝑥 )  =  𝑥 ) | 
						
							| 14 | 9 13 | eqtrd | ⊢ ( ( 𝐼  ∈  V  ∧  𝑥  ∈  ( Base ‘ 𝑀 ) )  →  ( ∅ ( +g ‘ 𝑀 ) 𝑥 )  =  𝑥 ) | 
						
							| 15 | 1 2 4 | frmdadd | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  ∅  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) ∅ )  =  ( 𝑥  ++  ∅ ) ) | 
						
							| 16 | 15 | ancoms | ⊢ ( ( ∅  ∈  ( Base ‘ 𝑀 )  ∧  𝑥  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) ∅ )  =  ( 𝑥  ++  ∅ ) ) | 
						
							| 17 | 7 16 | sylan | ⊢ ( ( 𝐼  ∈  V  ∧  𝑥  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) ∅ )  =  ( 𝑥  ++  ∅ ) ) | 
						
							| 18 |  | ccatrid | ⊢ ( 𝑥  ∈  Word  𝐼  →  ( 𝑥  ++  ∅ )  =  𝑥 ) | 
						
							| 19 | 11 18 | syl | ⊢ ( ( 𝐼  ∈  V  ∧  𝑥  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑥  ++  ∅ )  =  𝑥 ) | 
						
							| 20 | 17 19 | eqtrd | ⊢ ( ( 𝐼  ∈  V  ∧  𝑥  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) ∅ )  =  𝑥 ) | 
						
							| 21 | 2 3 4 7 14 20 | ismgmid2 | ⊢ ( 𝐼  ∈  V  →  ∅  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 22 |  | 0g0 | ⊢ ∅  =  ( 0g ‘ ∅ ) | 
						
							| 23 |  | fvprc | ⊢ ( ¬  𝐼  ∈  V  →  ( freeMnd ‘ 𝐼 )  =  ∅ ) | 
						
							| 24 | 1 23 | eqtrid | ⊢ ( ¬  𝐼  ∈  V  →  𝑀  =  ∅ ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( ¬  𝐼  ∈  V  →  ( 0g ‘ 𝑀 )  =  ( 0g ‘ ∅ ) ) | 
						
							| 26 | 22 25 | eqtr4id | ⊢ ( ¬  𝐼  ∈  V  →  ∅  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 27 | 21 26 | pm2.61i | ⊢ ∅  =  ( 0g ‘ 𝑀 ) |