Step |
Hyp |
Ref |
Expression |
1 |
|
frmdbas.m |
⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) |
2 |
|
frmdbas.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
3 |
|
eqidd |
⊢ ( 𝐼 ∈ 𝑉 → Word 𝐼 = Word 𝐼 ) |
4 |
|
eqid |
⊢ ( ++ ↾ ( Word 𝐼 × Word 𝐼 ) ) = ( ++ ↾ ( Word 𝐼 × Word 𝐼 ) ) |
5 |
1 3 4
|
frmdval |
⊢ ( 𝐼 ∈ 𝑉 → 𝑀 = { 〈 ( Base ‘ ndx ) , Word 𝐼 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( Word 𝐼 × Word 𝐼 ) ) 〉 } ) |
6 |
5
|
fveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝑀 ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , Word 𝐼 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( Word 𝐼 × Word 𝐼 ) ) 〉 } ) ) |
7 |
|
wrdexg |
⊢ ( 𝐼 ∈ 𝑉 → Word 𝐼 ∈ V ) |
8 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , Word 𝐼 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( Word 𝐼 × Word 𝐼 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , Word 𝐼 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( Word 𝐼 × Word 𝐼 ) ) 〉 } |
9 |
8
|
grpbase |
⊢ ( Word 𝐼 ∈ V → Word 𝐼 = ( Base ‘ { 〈 ( Base ‘ ndx ) , Word 𝐼 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( Word 𝐼 × Word 𝐼 ) ) 〉 } ) ) |
10 |
7 9
|
syl |
⊢ ( 𝐼 ∈ 𝑉 → Word 𝐼 = ( Base ‘ { 〈 ( Base ‘ ndx ) , Word 𝐼 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( Word 𝐼 × Word 𝐼 ) ) 〉 } ) ) |
11 |
6 10
|
eqtr4d |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
12 |
2 11
|
eqtrid |
⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = Word 𝐼 ) |