| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frmdmnd.m |
⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) |
| 2 |
|
frmdgsum.u |
⊢ 𝑈 = ( varFMnd ‘ 𝐼 ) |
| 3 |
|
coeq2 |
⊢ ( 𝑥 = ∅ → ( 𝑈 ∘ 𝑥 ) = ( 𝑈 ∘ ∅ ) ) |
| 4 |
|
co02 |
⊢ ( 𝑈 ∘ ∅ ) = ∅ |
| 5 |
3 4
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝑈 ∘ 𝑥 ) = ∅ ) |
| 6 |
5
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = ( 𝑀 Σg ∅ ) ) |
| 7 |
|
id |
⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) |
| 8 |
6 7
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ↔ ( 𝑀 Σg ∅ ) = ∅ ) ) |
| 9 |
8
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐼 ∈ 𝑉 → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ) ↔ ( 𝐼 ∈ 𝑉 → ( 𝑀 Σg ∅ ) = ∅ ) ) ) |
| 10 |
|
coeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑈 ∘ 𝑥 ) = ( 𝑈 ∘ 𝑦 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ) |
| 12 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
| 13 |
11 12
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ↔ ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) = 𝑦 ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐼 ∈ 𝑉 → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ) ↔ ( 𝐼 ∈ 𝑉 → ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) = 𝑦 ) ) ) |
| 15 |
|
coeq2 |
⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( 𝑈 ∘ 𝑥 ) = ( 𝑈 ∘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = ( 𝑀 Σg ( 𝑈 ∘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) |
| 17 |
|
id |
⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) |
| 18 |
16 17
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ↔ ( 𝑀 Σg ( 𝑈 ∘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) |
| 19 |
18
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( 𝐼 ∈ 𝑉 → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ) ↔ ( 𝐼 ∈ 𝑉 → ( 𝑀 Σg ( 𝑈 ∘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) |
| 20 |
|
coeq2 |
⊢ ( 𝑥 = 𝑊 → ( 𝑈 ∘ 𝑥 ) = ( 𝑈 ∘ 𝑊 ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑥 = 𝑊 → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = ( 𝑀 Σg ( 𝑈 ∘ 𝑊 ) ) ) |
| 22 |
|
id |
⊢ ( 𝑥 = 𝑊 → 𝑥 = 𝑊 ) |
| 23 |
21 22
|
eqeq12d |
⊢ ( 𝑥 = 𝑊 → ( ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ↔ ( 𝑀 Σg ( 𝑈 ∘ 𝑊 ) ) = 𝑊 ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑥 = 𝑊 → ( ( 𝐼 ∈ 𝑉 → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ) ↔ ( 𝐼 ∈ 𝑉 → ( 𝑀 Σg ( 𝑈 ∘ 𝑊 ) ) = 𝑊 ) ) ) |
| 25 |
1
|
frmd0 |
⊢ ∅ = ( 0g ‘ 𝑀 ) |
| 26 |
25
|
gsum0 |
⊢ ( 𝑀 Σg ∅ ) = ∅ |
| 27 |
26
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑀 Σg ∅ ) = ∅ ) |
| 28 |
|
oveq1 |
⊢ ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) = 𝑦 → ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ++ 〈“ 𝑧 ”〉 ) = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) |
| 29 |
|
simprl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → 𝑦 ∈ Word 𝐼 ) |
| 30 |
|
simprr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → 𝑧 ∈ 𝐼 ) |
| 31 |
30
|
s1cld |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → 〈“ 𝑧 ”〉 ∈ Word 𝐼 ) |
| 32 |
2
|
vrmdf |
⊢ ( 𝐼 ∈ 𝑉 → 𝑈 : 𝐼 ⟶ Word 𝐼 ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → 𝑈 : 𝐼 ⟶ Word 𝐼 ) |
| 34 |
|
ccatco |
⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 〈“ 𝑧 ”〉 ∈ Word 𝐼 ∧ 𝑈 : 𝐼 ⟶ Word 𝐼 ) → ( 𝑈 ∘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( ( 𝑈 ∘ 𝑦 ) ++ ( 𝑈 ∘ 〈“ 𝑧 ”〉 ) ) ) |
| 35 |
29 31 33 34
|
syl3anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( 𝑈 ∘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( ( 𝑈 ∘ 𝑦 ) ++ ( 𝑈 ∘ 〈“ 𝑧 ”〉 ) ) ) |
| 36 |
|
s1co |
⊢ ( ( 𝑧 ∈ 𝐼 ∧ 𝑈 : 𝐼 ⟶ Word 𝐼 ) → ( 𝑈 ∘ 〈“ 𝑧 ”〉 ) = 〈“ ( 𝑈 ‘ 𝑧 ) ”〉 ) |
| 37 |
30 33 36
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( 𝑈 ∘ 〈“ 𝑧 ”〉 ) = 〈“ ( 𝑈 ‘ 𝑧 ) ”〉 ) |
| 38 |
2
|
vrmdval |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝐼 ) → ( 𝑈 ‘ 𝑧 ) = 〈“ 𝑧 ”〉 ) |
| 39 |
38
|
adantrl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( 𝑈 ‘ 𝑧 ) = 〈“ 𝑧 ”〉 ) |
| 40 |
39
|
s1eqd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → 〈“ ( 𝑈 ‘ 𝑧 ) ”〉 = 〈“ 〈“ 𝑧 ”〉 ”〉 ) |
| 41 |
37 40
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( 𝑈 ∘ 〈“ 𝑧 ”〉 ) = 〈“ 〈“ 𝑧 ”〉 ”〉 ) |
| 42 |
41
|
oveq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( ( 𝑈 ∘ 𝑦 ) ++ ( 𝑈 ∘ 〈“ 𝑧 ”〉 ) ) = ( ( 𝑈 ∘ 𝑦 ) ++ 〈“ 〈“ 𝑧 ”〉 ”〉 ) ) |
| 43 |
35 42
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( 𝑈 ∘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( ( 𝑈 ∘ 𝑦 ) ++ 〈“ 〈“ 𝑧 ”〉 ”〉 ) ) |
| 44 |
43
|
oveq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( 𝑀 Σg ( 𝑈 ∘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) = ( 𝑀 Σg ( ( 𝑈 ∘ 𝑦 ) ++ 〈“ 〈“ 𝑧 ”〉 ”〉 ) ) ) |
| 45 |
1
|
frmdmnd |
⊢ ( 𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → 𝑀 ∈ Mnd ) |
| 47 |
|
wrdco |
⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝑈 : 𝐼 ⟶ Word 𝐼 ) → ( 𝑈 ∘ 𝑦 ) ∈ Word Word 𝐼 ) |
| 48 |
29 33 47
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( 𝑈 ∘ 𝑦 ) ∈ Word Word 𝐼 ) |
| 49 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 50 |
1 49
|
frmdbas |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 52 |
|
wrdeq |
⊢ ( ( Base ‘ 𝑀 ) = Word 𝐼 → Word ( Base ‘ 𝑀 ) = Word Word 𝐼 ) |
| 53 |
51 52
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → Word ( Base ‘ 𝑀 ) = Word Word 𝐼 ) |
| 54 |
48 53
|
eleqtrrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( 𝑈 ∘ 𝑦 ) ∈ Word ( Base ‘ 𝑀 ) ) |
| 55 |
31 51
|
eleqtrrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → 〈“ 𝑧 ”〉 ∈ ( Base ‘ 𝑀 ) ) |
| 56 |
55
|
s1cld |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → 〈“ 〈“ 𝑧 ”〉 ”〉 ∈ Word ( Base ‘ 𝑀 ) ) |
| 57 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 58 |
49 57
|
gsumccat |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑈 ∘ 𝑦 ) ∈ Word ( Base ‘ 𝑀 ) ∧ 〈“ 〈“ 𝑧 ”〉 ”〉 ∈ Word ( Base ‘ 𝑀 ) ) → ( 𝑀 Σg ( ( 𝑈 ∘ 𝑦 ) ++ 〈“ 〈“ 𝑧 ”〉 ”〉 ) ) = ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 〈“ 〈“ 𝑧 ”〉 ”〉 ) ) ) |
| 59 |
46 54 56 58
|
syl3anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( 𝑀 Σg ( ( 𝑈 ∘ 𝑦 ) ++ 〈“ 〈“ 𝑧 ”〉 ”〉 ) ) = ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 〈“ 〈“ 𝑧 ”〉 ”〉 ) ) ) |
| 60 |
49
|
gsumws1 |
⊢ ( 〈“ 𝑧 ”〉 ∈ ( Base ‘ 𝑀 ) → ( 𝑀 Σg 〈“ 〈“ 𝑧 ”〉 ”〉 ) = 〈“ 𝑧 ”〉 ) |
| 61 |
55 60
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( 𝑀 Σg 〈“ 〈“ 𝑧 ”〉 ”〉 ) = 〈“ 𝑧 ”〉 ) |
| 62 |
61
|
oveq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 〈“ 〈“ 𝑧 ”〉 ”〉 ) ) = ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ( +g ‘ 𝑀 ) 〈“ 𝑧 ”〉 ) ) |
| 63 |
49
|
gsumwcl |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑈 ∘ 𝑦 ) ∈ Word ( Base ‘ 𝑀 ) ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ∈ ( Base ‘ 𝑀 ) ) |
| 64 |
46 54 63
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ∈ ( Base ‘ 𝑀 ) ) |
| 65 |
1 49 57
|
frmdadd |
⊢ ( ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ∈ ( Base ‘ 𝑀 ) ∧ 〈“ 𝑧 ”〉 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ( +g ‘ 𝑀 ) 〈“ 𝑧 ”〉 ) = ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ++ 〈“ 𝑧 ”〉 ) ) |
| 66 |
64 55 65
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ( +g ‘ 𝑀 ) 〈“ 𝑧 ”〉 ) = ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ++ 〈“ 𝑧 ”〉 ) ) |
| 67 |
62 66
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 〈“ 〈“ 𝑧 ”〉 ”〉 ) ) = ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ++ 〈“ 𝑧 ”〉 ) ) |
| 68 |
59 67
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( 𝑀 Σg ( ( 𝑈 ∘ 𝑦 ) ++ 〈“ 〈“ 𝑧 ”〉 ”〉 ) ) = ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ++ 〈“ 𝑧 ”〉 ) ) |
| 69 |
44 68
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( 𝑀 Σg ( 𝑈 ∘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) = ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ++ 〈“ 𝑧 ”〉 ) ) |
| 70 |
69
|
eqeq1d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( ( 𝑀 Σg ( 𝑈 ∘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ↔ ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) ++ 〈“ 𝑧 ”〉 ) = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) |
| 71 |
28 70
|
imbitrrid |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) ) → ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) = 𝑦 → ( 𝑀 Σg ( 𝑈 ∘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) |
| 72 |
71
|
expcom |
⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐼 ∈ 𝑉 → ( ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) = 𝑦 → ( 𝑀 Σg ( 𝑈 ∘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) |
| 73 |
72
|
a2d |
⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐼 ∈ 𝑉 → ( 𝑀 Σg ( 𝑈 ∘ 𝑦 ) ) = 𝑦 ) → ( 𝐼 ∈ 𝑉 → ( 𝑀 Σg ( 𝑈 ∘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) |
| 74 |
9 14 19 24 27 73
|
wrdind |
⊢ ( 𝑊 ∈ Word 𝐼 → ( 𝐼 ∈ 𝑉 → ( 𝑀 Σg ( 𝑈 ∘ 𝑊 ) ) = 𝑊 ) ) |
| 75 |
74
|
impcom |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐼 ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑊 ) ) = 𝑊 ) |