Step |
Hyp |
Ref |
Expression |
1 |
|
frmdmnd.m |
⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) |
2 |
|
eqidd |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) ) |
3 |
|
eqidd |
⊢ ( 𝐼 ∈ 𝑉 → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
6 |
1 4 5
|
frmdadd |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ++ 𝑦 ) ) |
7 |
1 4
|
frmdelbas |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑀 ) → 𝑥 ∈ Word 𝐼 ) |
8 |
1 4
|
frmdelbas |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑀 ) → 𝑦 ∈ Word 𝐼 ) |
9 |
|
ccatcl |
⊢ ( ( 𝑥 ∈ Word 𝐼 ∧ 𝑦 ∈ Word 𝐼 ) → ( 𝑥 ++ 𝑦 ) ∈ Word 𝐼 ) |
10 |
7 8 9
|
syl2an |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ++ 𝑦 ) ∈ Word 𝐼 ) |
11 |
6 10
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ Word 𝐼 ) |
12 |
11
|
3adant1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ Word 𝐼 ) |
13 |
1 4
|
frmdbas |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
15 |
12 14
|
eleqtrrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
16 |
|
simpr1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) |
17 |
16 7
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑥 ∈ Word 𝐼 ) |
18 |
|
simpr2 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) |
19 |
18 8
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑦 ∈ Word 𝐼 ) |
20 |
|
simpr3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑀 ) ) |
21 |
1 4
|
frmdelbas |
⊢ ( 𝑧 ∈ ( Base ‘ 𝑀 ) → 𝑧 ∈ Word 𝐼 ) |
22 |
20 21
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑧 ∈ Word 𝐼 ) |
23 |
|
ccatass |
⊢ ( ( 𝑥 ∈ Word 𝐼 ∧ 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼 ) → ( ( 𝑥 ++ 𝑦 ) ++ 𝑧 ) = ( 𝑥 ++ ( 𝑦 ++ 𝑧 ) ) ) |
24 |
17 19 22 23
|
syl3anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑥 ++ 𝑦 ) ++ 𝑧 ) = ( 𝑥 ++ ( 𝑦 ++ 𝑧 ) ) ) |
25 |
16 18 10
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ++ 𝑦 ) ∈ Word 𝐼 ) |
26 |
13
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
27 |
25 26
|
eleqtrrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ++ 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
28 |
1 4 5
|
frmdadd |
⊢ ( ( ( 𝑥 ++ 𝑦 ) ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝑥 ++ 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑥 ++ 𝑦 ) ++ 𝑧 ) ) |
29 |
27 20 28
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑥 ++ 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑥 ++ 𝑦 ) ++ 𝑧 ) ) |
30 |
|
ccatcl |
⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼 ) → ( 𝑦 ++ 𝑧 ) ∈ Word 𝐼 ) |
31 |
19 22 30
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ++ 𝑧 ) ∈ Word 𝐼 ) |
32 |
31 26
|
eleqtrrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ++ 𝑧 ) ∈ ( Base ‘ 𝑀 ) ) |
33 |
1 4 5
|
frmdadd |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ ( 𝑦 ++ 𝑧 ) ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ++ 𝑧 ) ) = ( 𝑥 ++ ( 𝑦 ++ 𝑧 ) ) ) |
34 |
16 32 33
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ++ 𝑧 ) ) = ( 𝑥 ++ ( 𝑦 ++ 𝑧 ) ) ) |
35 |
24 29 34
|
3eqtr4d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑥 ++ 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ++ 𝑧 ) ) ) |
36 |
16 18 6
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ++ 𝑦 ) ) |
37 |
36
|
oveq1d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑥 ++ 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) ) |
38 |
1 4 5
|
frmdadd |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ++ 𝑧 ) ) |
39 |
18 20 38
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ++ 𝑧 ) ) |
40 |
39
|
oveq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ++ 𝑧 ) ) ) |
41 |
35 37 40
|
3eqtr4d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
42 |
|
wrd0 |
⊢ ∅ ∈ Word 𝐼 |
43 |
42 13
|
eleqtrrid |
⊢ ( 𝐼 ∈ 𝑉 → ∅ ∈ ( Base ‘ 𝑀 ) ) |
44 |
1 4 5
|
frmdadd |
⊢ ( ( ∅ ∈ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ∅ ( +g ‘ 𝑀 ) 𝑥 ) = ( ∅ ++ 𝑥 ) ) |
45 |
43 44
|
sylan |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ∅ ( +g ‘ 𝑀 ) 𝑥 ) = ( ∅ ++ 𝑥 ) ) |
46 |
7
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → 𝑥 ∈ Word 𝐼 ) |
47 |
|
ccatlid |
⊢ ( 𝑥 ∈ Word 𝐼 → ( ∅ ++ 𝑥 ) = 𝑥 ) |
48 |
46 47
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ∅ ++ 𝑥 ) = 𝑥 ) |
49 |
45 48
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ∅ ( +g ‘ 𝑀 ) 𝑥 ) = 𝑥 ) |
50 |
1 4 5
|
frmdadd |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ ∅ ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑥 ++ ∅ ) ) |
51 |
50
|
ancoms |
⊢ ( ( ∅ ∈ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑥 ++ ∅ ) ) |
52 |
43 51
|
sylan |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑥 ++ ∅ ) ) |
53 |
|
ccatrid |
⊢ ( 𝑥 ∈ Word 𝐼 → ( 𝑥 ++ ∅ ) = 𝑥 ) |
54 |
46 53
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ++ ∅ ) = 𝑥 ) |
55 |
52 54
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ∅ ) = 𝑥 ) |
56 |
2 3 15 41 43 49 55
|
ismndd |
⊢ ( 𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd ) |