Step |
Hyp |
Ref |
Expression |
1 |
|
frmdmnd.m |
⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) |
2 |
|
frmdgsum.u |
⊢ 𝑈 = ( varFMnd ‘ 𝐼 ) |
3 |
|
simpl1 |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → 𝐼 ∈ 𝑉 ) |
4 |
|
simpl2 |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → 𝐽 ⊆ 𝐼 ) |
5 |
|
sswrd |
⊢ ( 𝐽 ⊆ 𝐼 → Word 𝐽 ⊆ Word 𝐼 ) |
6 |
4 5
|
syl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → Word 𝐽 ⊆ Word 𝐼 ) |
7 |
|
simprr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → 𝑥 ∈ Word 𝐽 ) |
8 |
6 7
|
sseldd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → 𝑥 ∈ Word 𝐼 ) |
9 |
1 2
|
frmdgsum |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ) |
10 |
3 8 9
|
syl2anc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ) |
11 |
|
simpl3 |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) |
12 |
|
wrdf |
⊢ ( 𝑥 ∈ Word 𝐽 → 𝑥 : ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ⟶ 𝐽 ) |
13 |
12
|
ad2antll |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → 𝑥 : ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ⟶ 𝐽 ) |
14 |
13
|
frnd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ran 𝑥 ⊆ 𝐽 ) |
15 |
|
cores |
⊢ ( ran 𝑥 ⊆ 𝐽 → ( ( 𝑈 ↾ 𝐽 ) ∘ 𝑥 ) = ( 𝑈 ∘ 𝑥 ) ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( ( 𝑈 ↾ 𝐽 ) ∘ 𝑥 ) = ( 𝑈 ∘ 𝑥 ) ) |
17 |
2
|
vrmdf |
⊢ ( 𝐼 ∈ 𝑉 → 𝑈 : 𝐼 ⟶ Word 𝐼 ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝑈 : 𝐼 ⟶ Word 𝐼 ) |
19 |
18
|
ffnd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝑈 Fn 𝐼 ) |
20 |
|
fnssres |
⊢ ( ( 𝑈 Fn 𝐼 ∧ 𝐽 ⊆ 𝐼 ) → ( 𝑈 ↾ 𝐽 ) Fn 𝐽 ) |
21 |
19 4 20
|
syl2an2r |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( 𝑈 ↾ 𝐽 ) Fn 𝐽 ) |
22 |
|
df-ima |
⊢ ( 𝑈 “ 𝐽 ) = ran ( 𝑈 ↾ 𝐽 ) |
23 |
|
simprl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ) |
24 |
22 23
|
eqsstrrid |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ran ( 𝑈 ↾ 𝐽 ) ⊆ 𝐴 ) |
25 |
|
df-f |
⊢ ( ( 𝑈 ↾ 𝐽 ) : 𝐽 ⟶ 𝐴 ↔ ( ( 𝑈 ↾ 𝐽 ) Fn 𝐽 ∧ ran ( 𝑈 ↾ 𝐽 ) ⊆ 𝐴 ) ) |
26 |
21 24 25
|
sylanbrc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( 𝑈 ↾ 𝐽 ) : 𝐽 ⟶ 𝐴 ) |
27 |
|
wrdco |
⊢ ( ( 𝑥 ∈ Word 𝐽 ∧ ( 𝑈 ↾ 𝐽 ) : 𝐽 ⟶ 𝐴 ) → ( ( 𝑈 ↾ 𝐽 ) ∘ 𝑥 ) ∈ Word 𝐴 ) |
28 |
7 26 27
|
syl2anc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( ( 𝑈 ↾ 𝐽 ) ∘ 𝑥 ) ∈ Word 𝐴 ) |
29 |
16 28
|
eqeltrrd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( 𝑈 ∘ 𝑥 ) ∈ Word 𝐴 ) |
30 |
|
gsumwsubmcl |
⊢ ( ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ∧ ( 𝑈 ∘ 𝑥 ) ∈ Word 𝐴 ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) ∈ 𝐴 ) |
31 |
11 29 30
|
syl2anc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) ∈ 𝐴 ) |
32 |
10 31
|
eqeltrrd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽 ) ) → 𝑥 ∈ 𝐴 ) |
33 |
32
|
expr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ) → ( 𝑥 ∈ Word 𝐽 → 𝑥 ∈ 𝐴 ) ) |
34 |
33
|
ssrdv |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ) → Word 𝐽 ⊆ 𝐴 ) |
35 |
34
|
ex |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 → Word 𝐽 ⊆ 𝐴 ) ) |
36 |
|
simpl1 |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝐼 ∈ 𝑉 ) |
37 |
|
simp2 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝐽 ⊆ 𝐼 ) |
38 |
37
|
sselda |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝐼 ) |
39 |
2
|
vrmdval |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑈 ‘ 𝑥 ) = 〈“ 𝑥 ”〉 ) |
40 |
36 38 39
|
syl2anc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑈 ‘ 𝑥 ) = 〈“ 𝑥 ”〉 ) |
41 |
|
simpr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝐽 ) |
42 |
41
|
s1cld |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐽 ) → 〈“ 𝑥 ”〉 ∈ Word 𝐽 ) |
43 |
40 42
|
eqeltrd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑈 ‘ 𝑥 ) ∈ Word 𝐽 ) |
44 |
43
|
ralrimiva |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → ∀ 𝑥 ∈ 𝐽 ( 𝑈 ‘ 𝑥 ) ∈ Word 𝐽 ) |
45 |
18
|
ffund |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → Fun 𝑈 ) |
46 |
18
|
fdmd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → dom 𝑈 = 𝐼 ) |
47 |
37 46
|
sseqtrrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝐽 ⊆ dom 𝑈 ) |
48 |
|
funimass4 |
⊢ ( ( Fun 𝑈 ∧ 𝐽 ⊆ dom 𝑈 ) → ( ( 𝑈 “ 𝐽 ) ⊆ Word 𝐽 ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑈 ‘ 𝑥 ) ∈ Word 𝐽 ) ) |
49 |
45 47 48
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → ( ( 𝑈 “ 𝐽 ) ⊆ Word 𝐽 ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑈 ‘ 𝑥 ) ∈ Word 𝐽 ) ) |
50 |
44 49
|
mpbird |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝑈 “ 𝐽 ) ⊆ Word 𝐽 ) |
51 |
|
sstr2 |
⊢ ( ( 𝑈 “ 𝐽 ) ⊆ Word 𝐽 → ( Word 𝐽 ⊆ 𝐴 → ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ) ) |
52 |
50 51
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → ( Word 𝐽 ⊆ 𝐴 → ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ) ) |
53 |
35 52
|
impbid |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) → ( ( 𝑈 “ 𝐽 ) ⊆ 𝐴 ↔ Word 𝐽 ⊆ 𝐴 ) ) |