Step |
Hyp |
Ref |
Expression |
1 |
|
frmdmnd.m |
⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) |
2 |
|
sswrd |
⊢ ( 𝐽 ⊆ 𝐼 → Word 𝐽 ⊆ Word 𝐼 ) |
3 |
2
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → Word 𝐽 ⊆ Word 𝐼 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
5 |
1 4
|
frmdbas |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
6 |
5
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
7 |
3 6
|
sseqtrrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → Word 𝐽 ⊆ ( Base ‘ 𝑀 ) ) |
8 |
|
wrd0 |
⊢ ∅ ∈ Word 𝐽 |
9 |
8
|
a1i |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ∅ ∈ Word 𝐽 ) |
10 |
7
|
sselda |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ Word 𝐽 ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) |
11 |
7
|
sselda |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑦 ∈ Word 𝐽 ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) |
12 |
10 11
|
anim12dan |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ ( 𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) |
13 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
14 |
1 4 13
|
frmdadd |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ++ 𝑦 ) ) |
15 |
12 14
|
syl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ ( 𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ++ 𝑦 ) ) |
16 |
|
ccatcl |
⊢ ( ( 𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽 ) → ( 𝑥 ++ 𝑦 ) ∈ Word 𝐽 ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ ( 𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽 ) ) → ( 𝑥 ++ 𝑦 ) ∈ Word 𝐽 ) |
18 |
15 17
|
eqeltrd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ ( 𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ Word 𝐽 ) |
19 |
18
|
ralrimivva |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ∀ 𝑥 ∈ Word 𝐽 ∀ 𝑦 ∈ Word 𝐽 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ Word 𝐽 ) |
20 |
1
|
frmdmnd |
⊢ ( 𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd ) |
21 |
20
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝑀 ∈ Mnd ) |
22 |
1
|
frmd0 |
⊢ ∅ = ( 0g ‘ 𝑀 ) |
23 |
4 22 13
|
issubm |
⊢ ( 𝑀 ∈ Mnd → ( Word 𝐽 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( Word 𝐽 ⊆ ( Base ‘ 𝑀 ) ∧ ∅ ∈ Word 𝐽 ∧ ∀ 𝑥 ∈ Word 𝐽 ∀ 𝑦 ∈ Word 𝐽 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ Word 𝐽 ) ) ) |
24 |
21 23
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ( Word 𝐽 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( Word 𝐽 ⊆ ( Base ‘ 𝑀 ) ∧ ∅ ∈ Word 𝐽 ∧ ∀ 𝑥 ∈ Word 𝐽 ∀ 𝑦 ∈ Word 𝐽 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ Word 𝐽 ) ) ) |
25 |
7 9 19 24
|
mpbir3and |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → Word 𝐽 ∈ ( SubMnd ‘ 𝑀 ) ) |