Step |
Hyp |
Ref |
Expression |
1 |
|
frmdup.m |
⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) |
2 |
|
frmdup.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
frmdup.e |
⊢ 𝐸 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) |
4 |
|
frmdup.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
5 |
|
frmdup.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) |
6 |
|
frmdup.a |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐵 ) |
7 |
1
|
frmdmnd |
⊢ ( 𝐼 ∈ 𝑋 → 𝑀 ∈ Mnd ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
9 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → 𝐺 ∈ Mnd ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → 𝑥 ∈ Word 𝐼 ) |
11 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐵 ) |
12 |
|
wrdco |
⊢ ( ( 𝑥 ∈ Word 𝐼 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝐴 ∘ 𝑥 ) ∈ Word 𝐵 ) |
13 |
10 11 12
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐴 ∘ 𝑥 ) ∈ Word 𝐵 ) |
14 |
2
|
gsumwcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐴 ∘ 𝑥 ) ∈ Word 𝐵 ) → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ∈ 𝐵 ) |
15 |
9 13 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ∈ 𝐵 ) |
16 |
15 3
|
fmptd |
⊢ ( 𝜑 → 𝐸 : Word 𝐼 ⟶ 𝐵 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
18 |
1 17
|
frmdbas |
⊢ ( 𝐼 ∈ 𝑋 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
19 |
5 18
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
20 |
19
|
feq2d |
⊢ ( 𝜑 → ( 𝐸 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ↔ 𝐸 : Word 𝐼 ⟶ 𝐵 ) ) |
21 |
16 20
|
mpbird |
⊢ ( 𝜑 → 𝐸 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ) |
22 |
1 17
|
frmdelbas |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑀 ) → 𝑦 ∈ Word 𝐼 ) |
23 |
22
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑦 ∈ Word 𝐼 ) |
24 |
1 17
|
frmdelbas |
⊢ ( 𝑧 ∈ ( Base ‘ 𝑀 ) → 𝑧 ∈ Word 𝐼 ) |
25 |
24
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑧 ∈ Word 𝐼 ) |
26 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐴 : 𝐼 ⟶ 𝐵 ) |
27 |
|
ccatco |
⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) = ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) |
28 |
23 25 26 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) = ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) |
29 |
28
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) = ( 𝐺 Σg ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) ) |
30 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐺 ∈ Mnd ) |
31 |
|
wrdco |
⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝐴 ∘ 𝑦 ) ∈ Word 𝐵 ) |
32 |
23 26 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐴 ∘ 𝑦 ) ∈ Word 𝐵 ) |
33 |
|
wrdco |
⊢ ( ( 𝑧 ∈ Word 𝐼 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝐴 ∘ 𝑧 ) ∈ Word 𝐵 ) |
34 |
25 26 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐴 ∘ 𝑧 ) ∈ Word 𝐵 ) |
35 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
36 |
2 35
|
gsumccat |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐴 ∘ 𝑦 ) ∈ Word 𝐵 ∧ ( 𝐴 ∘ 𝑧 ) ∈ Word 𝐵 ) → ( 𝐺 Σg ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
37 |
30 32 34 36
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 Σg ( ( 𝐴 ∘ 𝑦 ) ++ ( 𝐴 ∘ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
38 |
29 37
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
39 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
40 |
1 17 39
|
frmdadd |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ++ 𝑧 ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ++ 𝑧 ) ) |
42 |
41
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝐸 ‘ ( 𝑦 ++ 𝑧 ) ) ) |
43 |
|
ccatcl |
⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼 ) → ( 𝑦 ++ 𝑧 ) ∈ Word 𝐼 ) |
44 |
23 25 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ++ 𝑧 ) ∈ Word 𝐼 ) |
45 |
|
coeq2 |
⊢ ( 𝑥 = ( 𝑦 ++ 𝑧 ) → ( 𝐴 ∘ 𝑥 ) = ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ++ 𝑧 ) → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) ) |
47 |
|
ovex |
⊢ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ∈ V |
48 |
46 3 47
|
fvmpt3i |
⊢ ( ( 𝑦 ++ 𝑧 ) ∈ Word 𝐼 → ( 𝐸 ‘ ( 𝑦 ++ 𝑧 ) ) = ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) ) |
49 |
44 48
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐸 ‘ ( 𝑦 ++ 𝑧 ) ) = ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) ) |
50 |
42 49
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝐺 Σg ( 𝐴 ∘ ( 𝑦 ++ 𝑧 ) ) ) ) |
51 |
|
coeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∘ 𝑥 ) = ( 𝐴 ∘ 𝑦 ) ) |
52 |
51
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ) |
53 |
52 3 47
|
fvmpt3i |
⊢ ( 𝑦 ∈ Word 𝐼 → ( 𝐸 ‘ 𝑦 ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ) |
54 |
|
coeq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 ∘ 𝑥 ) = ( 𝐴 ∘ 𝑧 ) ) |
55 |
54
|
oveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) |
56 |
55 3 47
|
fvmpt3i |
⊢ ( 𝑧 ∈ Word 𝐼 → ( 𝐸 ‘ 𝑧 ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) |
57 |
53 56
|
oveqan12d |
⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼 ) → ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
58 |
23 25 57
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) = ( ( 𝐺 Σg ( 𝐴 ∘ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐴 ∘ 𝑧 ) ) ) ) |
59 |
38 50 58
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) ) |
60 |
59
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) ) |
61 |
|
wrd0 |
⊢ ∅ ∈ Word 𝐼 |
62 |
|
coeq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ∘ 𝑥 ) = ( 𝐴 ∘ ∅ ) ) |
63 |
|
co02 |
⊢ ( 𝐴 ∘ ∅ ) = ∅ |
64 |
62 63
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝐴 ∘ 𝑥 ) = ∅ ) |
65 |
64
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 𝐺 Σg ∅ ) ) |
66 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
67 |
66
|
gsum0 |
⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
68 |
65 67
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 0g ‘ 𝐺 ) ) |
69 |
68 3 47
|
fvmpt3i |
⊢ ( ∅ ∈ Word 𝐼 → ( 𝐸 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) |
70 |
61 69
|
mp1i |
⊢ ( 𝜑 → ( 𝐸 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) |
71 |
21 60 70
|
3jca |
⊢ ( 𝜑 → ( 𝐸 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) ∧ ( 𝐸 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) ) |
72 |
1
|
frmd0 |
⊢ ∅ = ( 0g ‘ 𝑀 ) |
73 |
17 2 39 35 72 66
|
ismhm |
⊢ ( 𝐸 ∈ ( 𝑀 MndHom 𝐺 ) ↔ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd ) ∧ ( 𝐸 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( 𝐸 ‘ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐸 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐸 ‘ 𝑧 ) ) ∧ ( 𝐸 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) ) ) |
74 |
8 4 71 73
|
syl21anbrc |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑀 MndHom 𝐺 ) ) |