Step |
Hyp |
Ref |
Expression |
1 |
|
frmdup3.m |
⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) |
2 |
|
frmdup3.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
frmdup3.u |
⊢ 𝑈 = ( varFMnd ‘ 𝐼 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
5 |
4 2
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ) |
6 |
5
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ) |
7 |
1 4
|
frmdbas |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
10 |
9
|
feq2d |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → ( 𝐹 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ↔ 𝐹 : Word 𝐼 ⟶ 𝐵 ) ) |
11 |
6 10
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → 𝐹 : Word 𝐼 ⟶ 𝐵 ) |
12 |
11
|
feqmptd |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → 𝐹 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
13 |
|
simplrl |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ) |
14 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → 𝑥 ∈ Word 𝐼 ) |
15 |
3
|
vrmdf |
⊢ ( 𝐼 ∈ 𝑉 → 𝑈 : 𝐼 ⟶ Word 𝐼 ) |
16 |
15
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → 𝑈 : 𝐼 ⟶ Word 𝐼 ) |
17 |
8
|
feq3d |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝑈 : 𝐼 ⟶ ( Base ‘ 𝑀 ) ↔ 𝑈 : 𝐼 ⟶ Word 𝐼 ) ) |
18 |
16 17
|
mpbird |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → 𝑈 : 𝐼 ⟶ ( Base ‘ 𝑀 ) ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → 𝑈 : 𝐼 ⟶ ( Base ‘ 𝑀 ) ) |
20 |
|
wrdco |
⊢ ( ( 𝑥 ∈ Word 𝐼 ∧ 𝑈 : 𝐼 ⟶ ( Base ‘ 𝑀 ) ) → ( 𝑈 ∘ 𝑥 ) ∈ Word ( Base ‘ 𝑀 ) ) |
21 |
14 19 20
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝑈 ∘ 𝑥 ) ∈ Word ( Base ‘ 𝑀 ) ) |
22 |
4
|
gsumwmhm |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝑈 ∘ 𝑥 ) ∈ Word ( Base ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝐹 ∘ ( 𝑈 ∘ 𝑥 ) ) ) ) |
23 |
13 21 22
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐹 ‘ ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝐹 ∘ ( 𝑈 ∘ 𝑥 ) ) ) ) |
24 |
|
simpll2 |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → 𝐼 ∈ 𝑉 ) |
25 |
1 3
|
frmdgsum |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ) |
26 |
24 14 25
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ) |
27 |
26
|
fveq2d |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐹 ‘ ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
28 |
|
coass |
⊢ ( ( 𝐹 ∘ 𝑈 ) ∘ 𝑥 ) = ( 𝐹 ∘ ( 𝑈 ∘ 𝑥 ) ) |
29 |
|
simplrr |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐹 ∘ 𝑈 ) = 𝐴 ) |
30 |
29
|
coeq1d |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( ( 𝐹 ∘ 𝑈 ) ∘ 𝑥 ) = ( 𝐴 ∘ 𝑥 ) ) |
31 |
28 30
|
eqtr3id |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐹 ∘ ( 𝑈 ∘ 𝑥 ) ) = ( 𝐴 ∘ 𝑥 ) ) |
32 |
31
|
oveq2d |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐺 Σg ( 𝐹 ∘ ( 𝑈 ∘ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) |
33 |
23 27 32
|
3eqtr3d |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) |
34 |
33
|
mpteq2dva |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ) |
35 |
12 34
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → 𝐹 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ) |