| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frmdval.m |
⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) |
| 2 |
|
frmdval.b |
⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = Word 𝐼 ) |
| 3 |
|
frmdval.p |
⊢ + = ( ++ ↾ ( 𝐵 × 𝐵 ) ) |
| 4 |
|
df-frmd |
⊢ freeMnd = ( 𝑖 ∈ V ↦ { 〈 ( Base ‘ ndx ) , Word 𝑖 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( Word 𝑖 × Word 𝑖 ) ) 〉 } ) |
| 5 |
|
wrdeq |
⊢ ( 𝑖 = 𝐼 → Word 𝑖 = Word 𝐼 ) |
| 6 |
2
|
eqcomd |
⊢ ( 𝐼 ∈ 𝑉 → Word 𝐼 = 𝐵 ) |
| 7 |
5 6
|
sylan9eqr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼 ) → Word 𝑖 = 𝐵 ) |
| 8 |
7
|
opeq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼 ) → 〈 ( Base ‘ ndx ) , Word 𝑖 〉 = 〈 ( Base ‘ ndx ) , 𝐵 〉 ) |
| 9 |
7
|
sqxpeqd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼 ) → ( Word 𝑖 × Word 𝑖 ) = ( 𝐵 × 𝐵 ) ) |
| 10 |
9
|
reseq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼 ) → ( ++ ↾ ( Word 𝑖 × Word 𝑖 ) ) = ( ++ ↾ ( 𝐵 × 𝐵 ) ) ) |
| 11 |
10 3
|
eqtr4di |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼 ) → ( ++ ↾ ( Word 𝑖 × Word 𝑖 ) ) = + ) |
| 12 |
11
|
opeq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼 ) → 〈 ( +g ‘ ndx ) , ( ++ ↾ ( Word 𝑖 × Word 𝑖 ) ) 〉 = 〈 ( +g ‘ ndx ) , + 〉 ) |
| 13 |
8 12
|
preq12d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼 ) → { 〈 ( Base ‘ ndx ) , Word 𝑖 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( Word 𝑖 × Word 𝑖 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 } ) |
| 14 |
|
elex |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ V ) |
| 15 |
|
prex |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 } ∈ V |
| 16 |
15
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 } ∈ V ) |
| 17 |
4 13 14 16
|
fvmptd2 |
⊢ ( 𝐼 ∈ 𝑉 → ( freeMnd ‘ 𝐼 ) = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 } ) |
| 18 |
1 17
|
eqtrid |
⊢ ( 𝐼 ∈ 𝑉 → 𝑀 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 } ) |