Step |
Hyp |
Ref |
Expression |
1 |
|
frss |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑅 Fr 𝐴 → 𝑅 Fr 𝐵 ) ) |
2 |
|
sess2 |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑅 Se 𝐴 → 𝑅 Se 𝐵 ) ) |
3 |
1 2
|
anim12d |
⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ) ) |
4 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ 𝐵 ) |
5 |
|
predeq3 |
⊢ ( 𝑦 = 𝑏 → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐵 , 𝑏 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑦 = 𝑏 → ( Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ ) ) |
7 |
6
|
rspcev |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |
8 |
7
|
ex |
⊢ ( 𝑏 ∈ 𝐵 → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
10 |
|
predres |
⊢ Pred ( 𝑅 , 𝐵 , 𝑏 ) = Pred ( ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) |
11 |
|
relres |
⊢ Rel ( 𝑅 ↾ 𝐵 ) |
12 |
|
ssttrcl |
⊢ ( Rel ( 𝑅 ↾ 𝐵 ) → ( 𝑅 ↾ 𝐵 ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) ) |
13 |
11 12
|
ax-mp |
⊢ ( 𝑅 ↾ 𝐵 ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) |
14 |
|
predrelss |
⊢ ( ( 𝑅 ↾ 𝐵 ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) → Pred ( ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ) |
15 |
13 14
|
ax-mp |
⊢ Pred ( ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) |
16 |
10 15
|
eqsstri |
⊢ Pred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) |
17 |
|
ssn0 |
⊢ ( ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∧ Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) → Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) |
18 |
16 17
|
mpan |
⊢ ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) |
19 |
|
predss |
⊢ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 |
20 |
18 19
|
jctil |
⊢ ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) ) |
21 |
|
dffr4 |
⊢ ( 𝑅 Fr 𝐵 ↔ ∀ 𝑐 ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ) |
22 |
21
|
biimpi |
⊢ ( 𝑅 Fr 𝐵 → ∀ 𝑐 ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ) |
23 |
|
ttrclse |
⊢ ( 𝑅 Se 𝐵 → t++ ( 𝑅 ↾ 𝐵 ) Se 𝐵 ) |
24 |
|
setlikespec |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ t++ ( 𝑅 ↾ 𝐵 ) Se 𝐵 ) → Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∈ V ) |
25 |
23 24
|
sylan2 |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) → Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∈ V ) |
26 |
25
|
ancoms |
⊢ ( ( 𝑅 Se 𝐵 ∧ 𝑏 ∈ 𝐵 ) → Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∈ V ) |
27 |
|
sseq1 |
⊢ ( 𝑐 = Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) → ( 𝑐 ⊆ 𝐵 ↔ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ) ) |
28 |
|
neeq1 |
⊢ ( 𝑐 = Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) → ( 𝑐 ≠ ∅ ↔ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) ) |
29 |
27 28
|
anbi12d |
⊢ ( 𝑐 = Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) → ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) ↔ ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) ) ) |
30 |
|
predeq2 |
⊢ ( 𝑐 = Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) → Pred ( 𝑅 , 𝑐 , 𝑦 ) = Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) ) |
31 |
30
|
eqeq1d |
⊢ ( 𝑐 = Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) → ( Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
32 |
31
|
rexeqbi1dv |
⊢ ( 𝑐 = Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) → ( ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
33 |
29 32
|
imbi12d |
⊢ ( 𝑐 = Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) → ( ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ↔ ( ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) ) |
34 |
33
|
spcgv |
⊢ ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∈ V → ( ∀ 𝑐 ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) → ( ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) ) |
35 |
34
|
impcom |
⊢ ( ( ∀ 𝑐 ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∈ V ) → ( ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
36 |
22 26 35
|
syl2an |
⊢ ( ( 𝑅 Fr 𝐵 ∧ ( 𝑅 Se 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
37 |
36
|
anassrs |
⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
38 |
|
predres |
⊢ Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) |
39 |
|
predrelss |
⊢ ( ( 𝑅 ↾ 𝐵 ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) → Pred ( ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) ) |
40 |
13 39
|
ax-mp |
⊢ Pred ( ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) |
41 |
38 40
|
eqsstri |
⊢ Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) |
42 |
|
inss1 |
⊢ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) |
43 |
|
coss1 |
⊢ ( ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) → ( ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ⊆ ( t++ ( 𝑅 ↾ 𝐵 ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ) |
44 |
42 43
|
ax-mp |
⊢ ( ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ⊆ ( t++ ( 𝑅 ↾ 𝐵 ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) |
45 |
|
coss2 |
⊢ ( ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) → ( t++ ( 𝑅 ↾ 𝐵 ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ⊆ ( t++ ( 𝑅 ↾ 𝐵 ) ∘ t++ ( 𝑅 ↾ 𝐵 ) ) ) |
46 |
42 45
|
ax-mp |
⊢ ( t++ ( 𝑅 ↾ 𝐵 ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ⊆ ( t++ ( 𝑅 ↾ 𝐵 ) ∘ t++ ( 𝑅 ↾ 𝐵 ) ) |
47 |
44 46
|
sstri |
⊢ ( ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ⊆ ( t++ ( 𝑅 ↾ 𝐵 ) ∘ t++ ( 𝑅 ↾ 𝐵 ) ) |
48 |
|
ttrcltr |
⊢ ( t++ ( 𝑅 ↾ 𝐵 ) ∘ t++ ( 𝑅 ↾ 𝐵 ) ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) |
49 |
47 48
|
sstri |
⊢ ( ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) |
50 |
|
predtrss |
⊢ ( ( ( ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) ∧ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∧ 𝑏 ∈ 𝐵 ) → Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ) |
51 |
49 50
|
mp3an1 |
⊢ ( ( 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∧ 𝑏 ∈ 𝐵 ) → Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ) |
52 |
41 51
|
sstrid |
⊢ ( ( 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∧ 𝑏 ∈ 𝐵 ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ) |
53 |
|
sspred |
⊢ ( ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) ) |
54 |
19 52 53
|
sylancr |
⊢ ( ( 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∧ 𝑏 ∈ 𝐵 ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) ) |
55 |
54
|
ancoms |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) ) |
56 |
55
|
eqeq1d |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ) → ( Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
57 |
56
|
rexbidva |
⊢ ( 𝑏 ∈ 𝐵 → ( ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
58 |
|
ssrexv |
⊢ ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 → ( ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
59 |
19 58
|
ax-mp |
⊢ ( ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |
60 |
57 59
|
syl6bir |
⊢ ( 𝑏 ∈ 𝐵 → ( ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
61 |
60
|
adantl |
⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
62 |
37 61
|
syld |
⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
63 |
20 62
|
syl5 |
⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
64 |
9 63
|
pm2.61dne |
⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |
65 |
64
|
ex |
⊢ ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) → ( 𝑏 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
66 |
65
|
exlimdv |
⊢ ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) → ( ∃ 𝑏 𝑏 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
67 |
4 66
|
syl5bi |
⊢ ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) → ( 𝐵 ≠ ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
68 |
3 67
|
syl6com |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ≠ ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) ) |
69 |
68
|
imp32 |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |