Step |
Hyp |
Ref |
Expression |
1 |
|
frminex.1 |
⊢ 𝐴 ∈ V |
2 |
|
frminex.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) |
4 |
1
|
rabex |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V |
5 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 |
6 |
|
fri |
⊢ ( ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ∧ 𝑅 Fr 𝐴 ) ∧ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ) ) → ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ¬ 𝑦 𝑅 𝑧 ) |
7 |
2
|
ralrab |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ¬ 𝑦 𝑅 𝑧 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑧 ) ) |
8 |
7
|
rexbii |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ¬ 𝑦 𝑅 𝑧 ↔ ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑧 ) ) |
9 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑅 𝑥 ) ) |
10 |
9
|
notbid |
⊢ ( 𝑧 = 𝑥 → ( ¬ 𝑦 𝑅 𝑧 ↔ ¬ 𝑦 𝑅 𝑥 ) ) |
11 |
10
|
imbi2d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝜓 → ¬ 𝑦 𝑅 𝑧 ) ↔ ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) |
12 |
11
|
ralbidv |
⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) |
13 |
12
|
rexrab2 |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) |
14 |
8 13
|
bitri |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ¬ 𝑦 𝑅 𝑧 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) |
15 |
6 14
|
sylib |
⊢ ( ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ∧ 𝑅 Fr 𝐴 ) ∧ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) |
16 |
15
|
an4s |
⊢ ( ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ∧ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ) ∧ ( 𝑅 Fr 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) |
17 |
4 5 16
|
mpanl12 |
⊢ ( ( 𝑅 Fr 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) |
18 |
17
|
ex |
⊢ ( 𝑅 Fr 𝐴 → ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) ) |
19 |
3 18
|
syl5bir |
⊢ ( 𝑅 Fr 𝐴 → ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) ) |