Metamath Proof Explorer


Theorem frmx

Description: The X sequence is a nonnegative integer. See rmxnn for a strengthening. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion frmx Xrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℕ0

Proof

Step Hyp Ref Expression
1 rmxyelxp ( ( 𝑎 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ∈ ( ℕ0 × ℤ ) )
2 xp1st ( ( ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ∈ ( ℕ0 × ℤ ) → ( 1st ‘ ( ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) ∈ ℕ0 )
3 1 2 syl ( ( 𝑎 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 1st ‘ ( ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) ∈ ℕ0 )
4 3 rgen2 𝑎 ∈ ( ℤ ‘ 2 ) ∀ 𝑏 ∈ ℤ ( 1st ‘ ( ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) ∈ ℕ0
5 df-rmx Xrm = ( 𝑎 ∈ ( ℤ ‘ 2 ) , 𝑏 ∈ ℤ ↦ ( 1st ‘ ( ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) )
6 5 fmpo ( ∀ 𝑎 ∈ ( ℤ ‘ 2 ) ∀ 𝑏 ∈ ℤ ( 1st ‘ ( ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) ∈ ℕ0 ↔ Xrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℕ0 )
7 4 6 mpbi Xrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℕ0