Metamath Proof Explorer


Theorem frmy

Description: The Y sequence is an integer. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion frmy Yrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℤ

Proof

Step Hyp Ref Expression
1 rmxyelxp ( ( 𝑎 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ∈ ( ℕ0 × ℤ ) )
2 xp2nd ( ( ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ∈ ( ℕ0 × ℤ ) → ( 2nd ‘ ( ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) ∈ ℤ )
3 1 2 syl ( ( 𝑎 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 2nd ‘ ( ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) ∈ ℤ )
4 3 rgen2 𝑎 ∈ ( ℤ ‘ 2 ) ∀ 𝑏 ∈ ℤ ( 2nd ‘ ( ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) ∈ ℤ
5 df-rmy Yrm = ( 𝑎 ∈ ( ℤ ‘ 2 ) , 𝑏 ∈ ℤ ↦ ( 2nd ‘ ( ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) )
6 5 fmpo ( ∀ 𝑎 ∈ ( ℤ ‘ 2 ) ∀ 𝑏 ∈ ℤ ( 2nd ‘ ( ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) ∈ ℤ ↔ Yrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℤ )
7 4 6 mpbi Yrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℤ