Step |
Hyp |
Ref |
Expression |
1 |
|
rmxyelxp |
⊢ ( ( 𝑎 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( ◡ ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ∈ ( ℕ0 × ℤ ) ) |
2 |
|
xp2nd |
⊢ ( ( ◡ ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ∈ ( ℕ0 × ℤ ) → ( 2nd ‘ ( ◡ ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) ∈ ℤ ) |
3 |
1 2
|
syl |
⊢ ( ( 𝑎 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 2nd ‘ ( ◡ ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) ∈ ℤ ) |
4 |
3
|
rgen2 |
⊢ ∀ 𝑎 ∈ ( ℤ≥ ‘ 2 ) ∀ 𝑏 ∈ ℤ ( 2nd ‘ ( ◡ ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) ∈ ℤ |
5 |
|
df-rmy |
⊢ Yrm = ( 𝑎 ∈ ( ℤ≥ ‘ 2 ) , 𝑏 ∈ ℤ ↦ ( 2nd ‘ ( ◡ ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) ) |
6 |
5
|
fmpo |
⊢ ( ∀ 𝑎 ∈ ( ℤ≥ ‘ 2 ) ∀ 𝑏 ∈ ℤ ( 2nd ‘ ( ◡ ( 𝑐 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑐 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑐 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑏 ) ) ) ∈ ℤ ↔ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ ) |
7 |
4 6
|
mpbi |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |