| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssdif0 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∖ 𝐵 ) = ∅ ) |
| 2 |
1
|
necon3bbii |
⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) |
| 3 |
|
difss |
⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 |
| 4 |
|
frpomin2 |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) ) → ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) |
| 5 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
| 6 |
5
|
anbi1i |
⊢ ( ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) ) |
| 7 |
|
anass |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( ¬ 𝑦 ∈ 𝐵 ∧ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) ) ) |
| 8 |
|
indif2 |
⊢ ( ( ◡ 𝑅 “ { 𝑦 } ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ( ( ( ◡ 𝑅 “ { 𝑦 } ) ∩ 𝐴 ) ∖ 𝐵 ) |
| 9 |
|
df-pred |
⊢ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ( ( 𝐴 ∖ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) |
| 10 |
|
incom |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ( ( ◡ 𝑅 “ { 𝑦 } ) ∩ ( 𝐴 ∖ 𝐵 ) ) |
| 11 |
9 10
|
eqtri |
⊢ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ( ( ◡ 𝑅 “ { 𝑦 } ) ∩ ( 𝐴 ∖ 𝐵 ) ) |
| 12 |
|
df-pred |
⊢ Pred ( 𝑅 , 𝐴 , 𝑦 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) |
| 13 |
|
incom |
⊢ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ( ( ◡ 𝑅 “ { 𝑦 } ) ∩ 𝐴 ) |
| 14 |
12 13
|
eqtri |
⊢ Pred ( 𝑅 , 𝐴 , 𝑦 ) = ( ( ◡ 𝑅 “ { 𝑦 } ) ∩ 𝐴 ) |
| 15 |
14
|
difeq1i |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ∖ 𝐵 ) = ( ( ( ◡ 𝑅 “ { 𝑦 } ) ∩ 𝐴 ) ∖ 𝐵 ) |
| 16 |
8 11 15
|
3eqtr4i |
⊢ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ∖ 𝐵 ) |
| 17 |
16
|
eqeq1i |
⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ↔ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ∖ 𝐵 ) = ∅ ) |
| 18 |
|
ssdif0 |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ↔ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ∖ 𝐵 ) = ∅ ) |
| 19 |
17 18
|
bitr4i |
⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ) |
| 20 |
19
|
anbi1ci |
⊢ ( ( ¬ 𝑦 ∈ 𝐵 ∧ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) ↔ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
| 21 |
20
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ¬ 𝑦 ∈ 𝐵 ∧ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
| 22 |
6 7 21
|
3bitri |
⊢ ( ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
| 23 |
22
|
rexbii2 |
⊢ ( ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
| 24 |
|
rexanali |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵 ) ↔ ¬ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) |
| 25 |
23 24
|
bitri |
⊢ ( ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ↔ ¬ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) |
| 26 |
4 25
|
sylib |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) ) → ¬ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) |
| 27 |
26
|
ex |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → ¬ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) |
| 28 |
3 27
|
mpani |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ≠ ∅ → ¬ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) |
| 29 |
2 28
|
biimtrid |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ¬ 𝐴 ⊆ 𝐵 → ¬ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) |
| 30 |
29
|
con4d |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) → 𝐴 ⊆ 𝐵 ) ) |
| 31 |
30
|
imp |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) → 𝐴 ⊆ 𝐵 ) |
| 32 |
31
|
adantrl |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) → 𝐴 ⊆ 𝐵 ) |
| 33 |
|
simprl |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) → 𝐵 ⊆ 𝐴 ) |
| 34 |
32 33
|
eqssd |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) → 𝐴 = 𝐵 ) |