Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 19-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frpoins3g.1 | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑥 ) 𝜓 → 𝜑 ) ) | |
| frpoins3g.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| frpoins3g.3 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | ||
| Assertion | frpoins3g | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝐵 ∈ 𝐴 ) → 𝜒 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frpoins3g.1 | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑥 ) 𝜓 → 𝜑 ) ) | |
| 2 | frpoins3g.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | frpoins3g.3 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
| 4 | 1 2 | frpoins2g | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝜑 ) | 
| 5 | 3 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ 𝐵 ∈ 𝐴 ) → 𝜒 ) | 
| 6 | 4 5 | sylan | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝐵 ∈ 𝐴 ) → 𝜒 ) |